ray/rllib/models/tf/fcnet.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

282 lines
10 KiB
Python
Raw Normal View History

import numpy as np
import gym
from typing import Dict, Optional, Sequence
from ray.rllib.models.tf.misc import normc_initializer
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.models.utils import get_activation_fn
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.typing import TensorType, List, ModelConfigDict
from ray.rllib.utils.annotations import DeveloperAPI
tf1, tf, tfv = try_import_tf()
# TODO: (sven) obsolete this class once we only support native keras models.
@DeveloperAPI
class FullyConnectedNetwork(TFModelV2):
"""Generic fully connected network implemented in ModelV2 API."""
def __init__(
self,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
num_outputs: int,
model_config: ModelConfigDict,
name: str,
):
super(FullyConnectedNetwork, self).__init__(
obs_space, action_space, num_outputs, model_config, name
)
hiddens = list(model_config.get("fcnet_hiddens", [])) + list(
model_config.get("post_fcnet_hiddens", [])
)
activation = model_config.get("fcnet_activation")
if not model_config.get("fcnet_hiddens", []):
activation = model_config.get("post_fcnet_activation")
activation = get_activation_fn(activation)
no_final_linear = model_config.get("no_final_linear")
vf_share_layers = model_config.get("vf_share_layers")
free_log_std = model_config.get("free_log_std")
# Generate free-floating bias variables for the second half of
# the outputs.
if free_log_std:
assert num_outputs % 2 == 0, (
"num_outputs must be divisible by two",
num_outputs,
)
num_outputs = num_outputs // 2
self.log_std_var = tf.Variable(
[0.0] * num_outputs, dtype=tf.float32, name="log_std"
)
# We are using obs_flat, so take the flattened shape as input.
inputs = tf.keras.layers.Input(
shape=(int(np.product(obs_space.shape)),), name="observations"
)
# Last hidden layer output (before logits outputs).
last_layer = inputs
# The action distribution outputs.
logits_out = None
i = 1
# Create layers 0 to second-last.
for size in hiddens[:-1]:
last_layer = tf.keras.layers.Dense(
size,
name="fc_{}".format(i),
activation=activation,
kernel_initializer=normc_initializer(1.0),
)(last_layer)
i += 1
# The last layer is adjusted to be of size num_outputs, but it's a
# layer with activation.
if no_final_linear and num_outputs:
logits_out = tf.keras.layers.Dense(
num_outputs,
name="fc_out",
activation=activation,
kernel_initializer=normc_initializer(1.0),
)(last_layer)
# Finish the layers with the provided sizes (`hiddens`), plus -
# iff num_outputs > 0 - a last linear layer of size num_outputs.
else:
if len(hiddens) > 0:
last_layer = tf.keras.layers.Dense(
hiddens[-1],
name="fc_{}".format(i),
activation=activation,
kernel_initializer=normc_initializer(1.0),
)(last_layer)
if num_outputs:
logits_out = tf.keras.layers.Dense(
num_outputs,
name="fc_out",
activation=None,
kernel_initializer=normc_initializer(0.01),
)(last_layer)
# Adjust num_outputs to be the number of nodes in the last layer.
else:
self.num_outputs = ([int(np.product(obs_space.shape))] + hiddens[-1:])[
-1
]
# Concat the log std vars to the end of the state-dependent means.
if free_log_std and logits_out is not None:
def tiled_log_std(x):
return tf.tile(tf.expand_dims(self.log_std_var, 0), [tf.shape(x)[0], 1])
log_std_out = tf.keras.layers.Lambda(tiled_log_std)(inputs)
logits_out = tf.keras.layers.Concatenate(axis=1)([logits_out, log_std_out])
last_vf_layer = None
if not vf_share_layers:
# Build a parallel set of hidden layers for the value net.
last_vf_layer = inputs
i = 1
for size in hiddens:
last_vf_layer = tf.keras.layers.Dense(
size,
name="fc_value_{}".format(i),
activation=activation,
kernel_initializer=normc_initializer(1.0),
)(last_vf_layer)
i += 1
value_out = tf.keras.layers.Dense(
1,
name="value_out",
activation=None,
kernel_initializer=normc_initializer(0.01),
)(last_vf_layer if last_vf_layer is not None else last_layer)
self.base_model = tf.keras.Model(
inputs, [(logits_out if logits_out is not None else last_layer), value_out]
)
def forward(
self,
input_dict: Dict[str, TensorType],
state: List[TensorType],
seq_lens: TensorType,
) -> (TensorType, List[TensorType]):
model_out, self._value_out = self.base_model(input_dict["obs_flat"])
return model_out, state
def value_function(self) -> TensorType:
return tf.reshape(self._value_out, [-1])
@DeveloperAPI
class Keras_FullyConnectedNetwork(tf.keras.Model if tf else object):
"""Generic fully connected network implemented in tf Keras."""
def __init__(
self,
input_space: gym.spaces.Space,
action_space: gym.spaces.Space,
num_outputs: Optional[int] = None,
*,
name: str = "",
fcnet_hiddens: Optional[Sequence[int]] = (),
fcnet_activation: Optional[str] = None,
post_fcnet_hiddens: Optional[Sequence[int]] = (),
post_fcnet_activation: Optional[str] = None,
no_final_linear: bool = False,
vf_share_layers: bool = False,
free_log_std: bool = False,
**kwargs,
):
super().__init__(name=name)
hiddens = list(fcnet_hiddens or ()) + list(post_fcnet_hiddens or ())
activation = fcnet_activation
if not fcnet_hiddens:
activation = post_fcnet_activation
activation = get_activation_fn(activation)
# Generate free-floating bias variables for the second half of
# the outputs.
if free_log_std:
assert num_outputs % 2 == 0, (
"num_outputs must be divisible by two",
num_outputs,
)
num_outputs = num_outputs // 2
self.log_std_var = tf.Variable(
[0.0] * num_outputs, dtype=tf.float32, name="log_std"
)
# We are using obs_flat, so take the flattened shape as input.
inputs = tf.keras.layers.Input(
shape=(int(np.product(input_space.shape)),), name="observations"
)
# Last hidden layer output (before logits outputs).
last_layer = inputs
# The action distribution outputs.
logits_out = None
i = 1
# Create layers 0 to second-last.
for size in hiddens[:-1]:
last_layer = tf.keras.layers.Dense(
size,
name="fc_{}".format(i),
activation=activation,
kernel_initializer=normc_initializer(1.0),
)(last_layer)
i += 1
# The last layer is adjusted to be of size num_outputs, but it's a
# layer with activation.
if no_final_linear and num_outputs:
logits_out = tf.keras.layers.Dense(
num_outputs,
name="fc_out",
activation=activation,
kernel_initializer=normc_initializer(1.0),
)(last_layer)
# Finish the layers with the provided sizes (`hiddens`), plus -
# iff num_outputs > 0 - a last linear layer of size num_outputs.
else:
if len(hiddens) > 0:
last_layer = tf.keras.layers.Dense(
hiddens[-1],
name="fc_{}".format(i),
activation=activation,
kernel_initializer=normc_initializer(1.0),
)(last_layer)
if num_outputs:
logits_out = tf.keras.layers.Dense(
num_outputs,
name="fc_out",
activation=None,
kernel_initializer=normc_initializer(0.01),
)(last_layer)
# Concat the log std vars to the end of the state-dependent means.
if free_log_std and logits_out is not None:
def tiled_log_std(x):
return tf.tile(tf.expand_dims(self.log_std_var, 0), [tf.shape(x)[0], 1])
log_std_out = tf.keras.layers.Lambda(tiled_log_std)(inputs)
logits_out = tf.keras.layers.Concatenate(axis=1)([logits_out, log_std_out])
last_vf_layer = None
if not vf_share_layers:
# Build a parallel set of hidden layers for the value net.
last_vf_layer = inputs
i = 1
for size in hiddens:
last_vf_layer = tf.keras.layers.Dense(
size,
name="fc_value_{}".format(i),
activation=activation,
kernel_initializer=normc_initializer(1.0),
)(last_vf_layer)
i += 1
value_out = tf.keras.layers.Dense(
1,
name="value_out",
activation=None,
kernel_initializer=normc_initializer(0.01),
)(last_vf_layer if last_vf_layer is not None else last_layer)
self.base_model = tf.keras.Model(
inputs, [(logits_out if logits_out is not None else last_layer), value_out]
)
def call(
self, input_dict: SampleBatch
) -> (TensorType, List[TensorType], Dict[str, TensorType]):
model_out, value_out = self.base_model(input_dict[SampleBatch.OBS])
extra_outs = {SampleBatch.VF_PREDS: tf.reshape(value_out, [-1])}
return model_out, [], extra_outs