ray/rllib/algorithms/impala/impala_tf_policy.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

445 lines
17 KiB
Python
Raw Normal View History

"""Adapted from A3CTFPolicy to add V-trace.
Keep in sync with changes to A3CTFPolicy and VtraceSurrogatePolicy."""
import numpy as np
import logging
import gym
from typing import Dict, List, Type, Union
import ray
from ray.rllib.algorithms.impala import vtrace_tf as vtrace
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.tf.tf_action_dist import Categorical, TFActionDistribution
from ray.rllib.policy.dynamic_tf_policy_v2 import DynamicTFPolicyV2
from ray.rllib.policy.eager_tf_policy_v2 import EagerTFPolicyV2
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.tf_mixins import LearningRateSchedule, EntropyCoeffSchedule
from ray.rllib.utils import force_list
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.tf_utils import explained_variance
from ray.rllib.utils.typing import (
LocalOptimizer,
ModelGradients,
TensorType,
TFPolicyV2Type,
)
tf1, tf, tfv = try_import_tf()
logger = logging.getLogger(__name__)
class VTraceLoss:
def __init__(
self,
actions,
actions_logp,
actions_entropy,
dones,
behaviour_action_logp,
behaviour_logits,
target_logits,
discount,
rewards,
values,
bootstrap_value,
dist_class,
model,
valid_mask,
config,
vf_loss_coeff=0.5,
entropy_coeff=0.01,
clip_rho_threshold=1.0,
clip_pg_rho_threshold=1.0,
):
"""Policy gradient loss with vtrace importance weighting.
VTraceLoss takes tensors of shape [T, B, ...], where `B` is the
batch_size. The reason we need to know `B` is for V-trace to properly
handle episode cut boundaries.
Args:
actions: An int|float32 tensor of shape [T, B, ACTION_SPACE].
actions_logp: A float32 tensor of shape [T, B].
actions_entropy: A float32 tensor of shape [T, B].
dones: A bool tensor of shape [T, B].
behaviour_action_logp: Tensor of shape [T, B].
behaviour_logits: A list with length of ACTION_SPACE of float32
tensors of shapes
[T, B, ACTION_SPACE[0]],
...,
[T, B, ACTION_SPACE[-1]]
target_logits: A list with length of ACTION_SPACE of float32
tensors of shapes
[T, B, ACTION_SPACE[0]],
...,
[T, B, ACTION_SPACE[-1]]
discount: A float32 scalar.
rewards: A float32 tensor of shape [T, B].
values: A float32 tensor of shape [T, B].
bootstrap_value: A float32 tensor of shape [B].
dist_class: action distribution class for logits.
valid_mask: A bool tensor of valid RNN input elements (#2992).
config: Algorithm config dict.
"""
# Compute vtrace on the CPU for better perf.
with tf.device("/cpu:0"):
self.vtrace_returns = vtrace.multi_from_logits(
behaviour_action_log_probs=behaviour_action_logp,
behaviour_policy_logits=behaviour_logits,
target_policy_logits=target_logits,
actions=tf.unstack(actions, axis=2),
discounts=tf.cast(~tf.cast(dones, tf.bool), tf.float32) * discount,
rewards=rewards,
values=values,
bootstrap_value=bootstrap_value,
dist_class=dist_class,
model=model,
clip_rho_threshold=tf.cast(clip_rho_threshold, tf.float32),
clip_pg_rho_threshold=tf.cast(clip_pg_rho_threshold, tf.float32),
)
self.value_targets = self.vtrace_returns.vs
# The policy gradients loss.
masked_pi_loss = tf.boolean_mask(
actions_logp * self.vtrace_returns.pg_advantages, valid_mask
)
self.pi_loss = -tf.reduce_sum(masked_pi_loss)
self.mean_pi_loss = -tf.reduce_mean(masked_pi_loss)
# The baseline loss.
delta = tf.boolean_mask(values - self.vtrace_returns.vs, valid_mask)
delta_squarred = tf.math.square(delta)
self.vf_loss = 0.5 * tf.reduce_sum(delta_squarred)
self.mean_vf_loss = 0.5 * tf.reduce_mean(delta_squarred)
# The entropy loss.
masked_entropy = tf.boolean_mask(actions_entropy, valid_mask)
self.entropy = tf.reduce_sum(masked_entropy)
self.mean_entropy = tf.reduce_mean(masked_entropy)
# The summed weighted loss.
self.total_loss = self.pi_loss - self.entropy * entropy_coeff
# Optional vf loss (or in a separate term due to separate
# optimizers/networks).
self.loss_wo_vf = self.total_loss
if not config["_separate_vf_optimizer"]:
self.total_loss += self.vf_loss * vf_loss_coeff
def _make_time_major(policy, seq_lens, tensor, drop_last=False):
"""Swaps batch and trajectory axis.
2020-09-20 11:27:02 +02:00
Args:
policy: Policy reference
seq_lens: Sequence lengths if recurrent or None
tensor: A tensor or list of tensors to reshape.
drop_last: A bool indicating whether to drop the last
trajectory item.
Returns:
res: A tensor with swapped axes or a list of tensors with
swapped axes.
"""
if isinstance(tensor, list):
return [_make_time_major(policy, seq_lens, t, drop_last) for t in tensor]
if policy.is_recurrent():
B = tf.shape(seq_lens)[0]
T = tf.shape(tensor)[0] // B
else:
# Important: chop the tensor into batches at known episode cut
# boundaries.
# TODO: (sven) this is kind of a hack and won't work for
# batch_mode=complete_episodes.
T = policy.config["rollout_fragment_length"]
B = tf.shape(tensor)[0] // T
rs = tf.reshape(tensor, tf.concat([[B, T], tf.shape(tensor)[1:]], axis=0))
# swap B and T axes
res = tf.transpose(rs, [1, 0] + list(range(2, 1 + int(tf.shape(tensor).shape[0]))))
if drop_last:
return res[:-1]
return res
class VTraceClipGradients:
"""VTrace version of gradient computation logic."""
def __init__(self):
"""No special initialization required."""
pass
def compute_gradients_fn(
self, optimizer: LocalOptimizer, loss: TensorType
) -> ModelGradients:
# Supporting more than one loss/optimizer.
if self.config["_tf_policy_handles_more_than_one_loss"]:
optimizers = force_list(optimizer)
losses = force_list(loss)
assert len(optimizers) == len(losses)
clipped_grads_and_vars = []
for optim, loss_ in zip(optimizers, losses):
grads_and_vars = optim.compute_gradients(
loss_, self.model.trainable_variables()
)
clipped_g_and_v = []
for g, v in grads_and_vars:
if g is not None:
clipped_g, _ = tf.clip_by_global_norm(
[g], self.config["grad_clip"]
)
clipped_g_and_v.append((clipped_g[0], v))
clipped_grads_and_vars.append(clipped_g_and_v)
self.grads = [g for g_and_v in clipped_grads_and_vars for (g, v) in g_and_v]
# Only one optimizer and and loss term.
else:
grads_and_vars = optimizer.compute_gradients(
loss, self.model.trainable_variables()
)
grads = [g for (g, v) in grads_and_vars]
self.grads, _ = tf.clip_by_global_norm(grads, self.config["grad_clip"])
clipped_grads_and_vars = list(
zip(self.grads, self.model.trainable_variables())
)
return clipped_grads_and_vars
class VTraceOptimizer:
"""Optimizer function for VTrace policies."""
def __init__(self):
pass
# TODO: maybe standardize this function, so the choice of optimizers are more
# predictable for common algorithms.
def optimizer(
self,
) -> Union["tf.keras.optimizers.Optimizer", List["tf.keras.optimizers.Optimizer"]]:
config = self.config
if config["opt_type"] == "adam":
if config["framework"] in ["tf2", "tfe"]:
optim = tf.keras.optimizers.Adam(self.cur_lr)
if config["_separate_vf_optimizer"]:
return optim, tf.keras.optimizers.Adam(config["_lr_vf"])
else:
optim = tf1.train.AdamOptimizer(self.cur_lr)
if config["_separate_vf_optimizer"]:
return optim, tf1.train.AdamOptimizer(config["_lr_vf"])
else:
if config["_separate_vf_optimizer"]:
raise ValueError(
"RMSProp optimizer not supported for separate"
"vf- and policy losses yet! Set `opt_type=adam`"
)
if tfv == 2:
optim = tf.keras.optimizers.RMSprop(
self.cur_lr, config["decay"], config["momentum"], config["epsilon"]
)
else:
optim = tf1.train.RMSPropOptimizer(
self.cur_lr, config["decay"], config["momentum"], config["epsilon"]
)
return optim
# We need this builder function because we want to share the same
# custom logics between TF1 dynamic and TF2 eager policies.
def get_impala_tf_policy(base: TFPolicyV2Type) -> TFPolicyV2Type:
"""Construct an ImpalaTFPolicy inheriting either dynamic or eager base policies.
Args:
base: Base class for this policy. DynamicTFPolicyV2 or EagerTFPolicyV2.
Returns:
A TF Policy to be used with Impala.
"""
# VTrace mixins are placed in front of more general mixins to make sure
# their functions like optimizer() overrides all the other implementations
# (e.g., LearningRateSchedule.optimizer())
class ImpalaTFPolicy(
VTraceClipGradients,
VTraceOptimizer,
LearningRateSchedule,
EntropyCoeffSchedule,
base,
):
def __init__(
self,
obs_space,
action_space,
config,
existing_model=None,
existing_inputs=None,
):
# First thing first, enable eager execution if necessary.
base.enable_eager_execution_if_necessary()
config = dict(
ray.rllib.algorithms.impala.impala.ImpalaConfig().to_dict(), **config
)
# Initialize base class.
base.__init__(
self,
obs_space,
action_space,
config,
existing_inputs=existing_inputs,
existing_model=existing_model,
)
VTraceClipGradients.__init__(self)
VTraceOptimizer.__init__(self)
LearningRateSchedule.__init__(self, config["lr"], config["lr_schedule"])
EntropyCoeffSchedule.__init__(
self, config["entropy_coeff"], config["entropy_coeff_schedule"]
)
# Note: this is a bit ugly, but loss and optimizer initialization must
# happen after all the MixIns are initialized.
self.maybe_initialize_optimizer_and_loss()
@override(base)
def loss(
self,
model: Union[ModelV2, "tf.keras.Model"],
dist_class: Type[TFActionDistribution],
train_batch: SampleBatch,
) -> Union[TensorType, List[TensorType]]:
model_out, _ = model(train_batch)
action_dist = dist_class(model_out, model)
if isinstance(self.action_space, gym.spaces.Discrete):
is_multidiscrete = False
output_hidden_shape = [self.action_space.n]
elif isinstance(self.action_space, gym.spaces.MultiDiscrete):
is_multidiscrete = True
output_hidden_shape = self.action_space.nvec.astype(np.int32)
else:
is_multidiscrete = False
output_hidden_shape = 1
def make_time_major(*args, **kw):
return _make_time_major(
self, train_batch.get(SampleBatch.SEQ_LENS), *args, **kw
)
actions = train_batch[SampleBatch.ACTIONS]
dones = train_batch[SampleBatch.DONES]
rewards = train_batch[SampleBatch.REWARDS]
behaviour_action_logp = train_batch[SampleBatch.ACTION_LOGP]
behaviour_logits = train_batch[SampleBatch.ACTION_DIST_INPUTS]
unpacked_behaviour_logits = tf.split(
behaviour_logits, output_hidden_shape, axis=1
)
unpacked_outputs = tf.split(model_out, output_hidden_shape, axis=1)
values = model.value_function()
if self.is_recurrent():
max_seq_len = tf.reduce_max(train_batch[SampleBatch.SEQ_LENS])
mask = tf.sequence_mask(train_batch[SampleBatch.SEQ_LENS], max_seq_len)
mask = tf.reshape(mask, [-1])
else:
mask = tf.ones_like(rewards)
# Prepare actions for loss
loss_actions = (
actions if is_multidiscrete else tf.expand_dims(actions, axis=1)
)
# Inputs are reshaped from [B * T] => [(T|T-1), B] for V-trace calc.
drop_last = self.config["vtrace_drop_last_ts"]
self.vtrace_loss = VTraceLoss(
actions=make_time_major(loss_actions, drop_last=drop_last),
actions_logp=make_time_major(
action_dist.logp(actions), drop_last=drop_last
),
actions_entropy=make_time_major(
action_dist.multi_entropy(), drop_last=drop_last
),
dones=make_time_major(dones, drop_last=drop_last),
behaviour_action_logp=make_time_major(
behaviour_action_logp, drop_last=drop_last
),
behaviour_logits=make_time_major(
unpacked_behaviour_logits, drop_last=drop_last
),
target_logits=make_time_major(unpacked_outputs, drop_last=drop_last),
discount=self.config["gamma"],
rewards=make_time_major(rewards, drop_last=drop_last),
values=make_time_major(values, drop_last=drop_last),
bootstrap_value=make_time_major(values)[-1],
dist_class=Categorical if is_multidiscrete else dist_class,
model=model,
valid_mask=make_time_major(mask, drop_last=drop_last),
config=self.config,
vf_loss_coeff=self.config["vf_loss_coeff"],
entropy_coeff=self.entropy_coeff,
clip_rho_threshold=self.config["vtrace_clip_rho_threshold"],
clip_pg_rho_threshold=self.config["vtrace_clip_pg_rho_threshold"],
)
if self.config.get("_separate_vf_optimizer"):
return self.vtrace_loss.loss_wo_vf, self.vtrace_loss.vf_loss
else:
return self.vtrace_loss.total_loss
@override(base)
def stats_fn(self, train_batch: SampleBatch) -> Dict[str, TensorType]:
drop_last = self.config["vtrace"] and self.config["vtrace_drop_last_ts"]
values_batched = _make_time_major(
self,
train_batch.get(SampleBatch.SEQ_LENS),
self.model.value_function(),
drop_last=drop_last,
)
return {
"cur_lr": tf.cast(self.cur_lr, tf.float64),
"policy_loss": self.vtrace_loss.mean_pi_loss,
"entropy": self.vtrace_loss.mean_entropy,
"entropy_coeff": tf.cast(self.entropy_coeff, tf.float64),
"var_gnorm": tf.linalg.global_norm(self.model.trainable_variables()),
"vf_loss": self.vtrace_loss.mean_vf_loss,
"vf_explained_var": explained_variance(
tf.reshape(self.vtrace_loss.value_targets, [-1]),
tf.reshape(values_batched, [-1]),
),
}
@override(base)
def grad_stats_fn(
self, train_batch: SampleBatch, grads: ModelGradients
) -> Dict[str, TensorType]:
# We have support for more than one loss (list of lists of grads).
if self.config.get("_tf_policy_handles_more_than_one_loss"):
grad_gnorm = [tf.linalg.global_norm(g) for g in grads]
# Old case: We have a single list of grads (only one loss term and
# optimizer).
else:
grad_gnorm = tf.linalg.global_norm(grads)
return {
"grad_gnorm": grad_gnorm,
}
@override(base)
def get_batch_divisibility_req(self) -> int:
return self.config["rollout_fragment_length"]
return ImpalaTFPolicy
ImpalaTF1Policy = get_impala_tf_policy(DynamicTFPolicyV2)
ImpalaTF2Policy = get_impala_tf_policy(EagerTFPolicyV2)