ray/examples/carla/train_ppo.py

42 lines
1 KiB
Python
Raw Normal View History

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from ray.tune import register_env, run_experiments
from env import CarlaEnv, ENV_CONFIG
env_name = "carla_env"
env_config = ENV_CONFIG.copy()
env_config.update({
"verbose": False,
"x_res": 80,
"y_res": 80,
"use_depth_camera": True,
"discrete_actions": False,
"max_steps": 150,
})
register_env(env_name, lambda: CarlaEnv(env_config))
run_experiments({
"carla": {
"run": "PPO",
"env": "carla_env",
"resources": {"cpu": 4, "gpu": 1},
"config": {
"num_workers": 1,
"timesteps_per_batch": 2000,
"min_steps_per_task": 100,
"lambda": 0.95,
"clip_param": 0.2,
"num_sgd_iter": 20,
"sgd_stepsize": 0.0001,
"sgd_batchsize": 32,
"devices": ["/gpu:0"],
"tf_session_args": {
"gpu_options": {"allow_growth": True}
}
},
},
}, redirect_output=True)