2020-05-26 08:39:34 -07:00
What is Ray?
============
2017-02-27 21:14:31 -08:00
2020-05-26 08:39:34 -07:00
.. include :: ray-overview/basics.rst
2018-01-19 10:14:34 -08:00
2020-05-26 08:39:34 -07:00
Getting Started with Ray
------------------------
2018-01-19 10:14:34 -08:00
2020-05-26 08:39:34 -07:00
Check out :ref: `gentle-intro` to learn more about Ray and its ecosystem of libraries that enable things like distributed hyperparameter tuning,
reinforcement learning, and distributed training.
2017-02-27 21:14:31 -08:00
2020-05-26 08:39:34 -07:00
Ray uses Tasks (functions) and Actors (Classes) to allow you to parallelize your Python code:
2019-08-28 17:54:15 -07:00
2019-08-05 23:33:14 -07:00
.. code-block :: python
2020-06-25 12:38:12 -07:00
# First, run `pip install ray` .
2019-08-28 17:54:15 -07:00
import ray
2019-08-05 23:33:14 -07:00
ray.init()
@ray.remote
def f(x):
return x * x
futures = [f.remote(i) for i in range(4)]
2020-05-26 08:39:34 -07:00
print(ray.get(futures)) # [0, 1, 4, 9]
2019-08-05 23:33:14 -07:00
@ray.remote
2019-10-10 19:09:25 -07:00
class Counter(object):
2019-08-05 23:33:14 -07:00
def __init__(self):
self.n = 0
2019-08-12 11:16:16 +03:00
def increment(self):
2019-08-05 23:33:14 -07:00
self.n += 1
def read(self):
return self.n
counters = [Counter.remote() for i in range(4)]
[c.increment.remote() for c in counters]
futures = [c.read.remote() for c in counters]
2020-05-26 08:39:34 -07:00
print(ray.get(futures)) # [1, 1, 1, 1]
2019-08-05 23:33:14 -07:00
2020-06-25 12:38:12 -07:00
You can also get started by visiting our `Tutorials <https://github.com/ray-project/tutorial> `_ . For the latest wheels (nightlies), see the `installation page <installation.html> `__ .
2019-08-05 23:33:14 -07:00
2020-06-21 15:55:06 -07:00
2020-06-25 12:38:12 -07:00
Getting Involved
================
2019-08-05 23:33:14 -07:00
2020-06-25 12:38:12 -07:00
.. include :: ray-overview/involvement.rst
2019-08-05 23:33:14 -07:00
2020-06-25 12:38:12 -07:00
If you're interested in contributing to Ray, visit our page on :ref: `Getting Involved <getting-involved>` to read about the contribution process and see what you can work on!
2018-03-08 09:18:09 -08:00
2019-08-05 23:33:14 -07:00
2019-08-28 17:54:15 -07:00
More Information
2020-05-26 08:39:34 -07:00
================
2019-08-28 17:54:15 -07:00
2020-06-25 12:38:12 -07:00
Here are some talks, papers, and press coverage involving Ray and its libraries. Please raise an issue if any of the below links are broken, or if you'd like to add your own talk!
2019-12-02 19:59:23 -08:00
Blog and Press
2020-05-26 08:39:34 -07:00
--------------
2019-12-02 19:59:23 -08:00
- `Modern Parallel and Distributed Python: A Quick Tutorial on Ray <https://towardsdatascience.com/modern-parallel-and-distributed-python-a-quick-tutorial-on-ray-99f8d70369b8> `_
- `Why Every Python Developer Will Love Ray <https://www.datanami.com/2019/11/05/why-every-python-developer-will-love-ray/> `_
- `Ray: A Distributed System for AI (BAIR) <http://bair.berkeley.edu/blog/2018/01/09/ray/> `_
- `10x Faster Parallel Python Without Python Multiprocessing <https://towardsdatascience.com/10x-faster-parallel-python-without-python-multiprocessing-e5017c93cce1> `_
- `Implementing A Parameter Server in 15 Lines of Python with Ray <https://ray-project.github.io/2018/07/15/parameter-server-in-fifteen-lines.html> `_
- `Ray Distributed AI Framework Curriculum <https://rise.cs.berkeley.edu/blog/ray-intel-curriculum/> `_
- `RayOnSpark: Running Emerging AI Applications on Big Data Clusters with Ray and Analytics Zoo <https://medium.com/riselab/rayonspark-running-emerging-ai-applications-on-big-data-clusters-with-ray-and-analytics-zoo-923e0136ed6a> `_
- `First user tips for Ray <https://rise.cs.berkeley.edu/blog/ray-tips-for-first-time-users/> `_
- [Tune] `Tune: a Python library for fast hyperparameter tuning at any scale <https://towardsdatascience.com/fast-hyperparameter-tuning-at-scale-d428223b081c> `_
- [Tune] `Cutting edge hyperparameter tuning with Ray Tune <https://medium.com/riselab/cutting-edge-hyperparameter-tuning-with-ray-tune-be6c0447afdf> `_
- [RLlib] `New Library Targets High Speed Reinforcement Learning <https://www.datanami.com/2018/02/01/rays-new-library-targets-high-speed-reinforcement-learning/> `_
- [RLlib] `Scaling Multi Agent Reinforcement Learning <http://bair.berkeley.edu/blog/2018/12/12/rllib/> `_
- [RLlib] `Functional RL with Keras and Tensorflow Eager <https://bair.berkeley.edu/blog/2019/10/14/functional-rl/> `_
- [Modin] `How to Speed up Pandas by 4x with one line of code <https://www.kdnuggets.com/2019/11/speed-up-pandas-4x.html> `_
- [Modin] `Quick Tip – Speed up Pandas using Modin <https://pythondata.com/quick-tip-speed-up-pandas-using-modin/> `_
- `Ray Blog`_
.. _`Ray Blog`: https://ray-project.github.io/
Talks (Videos)
2020-05-26 08:39:34 -07:00
--------------
2019-12-02 19:59:23 -08:00
- `Programming at any Scale with Ray | SF Python Meetup Sept 2019 <https://www.youtube.com/watch?v=LfpHyIXBhlE> `_
- `Ray for Reinforcement Learning | Data Council 2019 <https://www.youtube.com/watch?v=Ayc0ca150HI> `_
- `Scaling Interactive Pandas Workflows with Modin <https://www.youtube.com/watch?v=-HjLd_3ahCw> `_
- `Ray: A Distributed Execution Framework for AI | SciPy 2018 <https://www.youtube.com/watch?v=D_oz7E4v-U0> `_
- `Ray: A Cluster Computing Engine for Reinforcement Learning Applications | Spark Summit <https://www.youtube.com/watch?v=xadZRRB_TeI> `_
- `RLlib: Ray Reinforcement Learning Library | RISECamp 2018 <https://www.youtube.com/watch?v=eeRGORQthaQ> `_
- `Enabling Composition in Distributed Reinforcement Learning | Spark Summit 2018 <https://www.youtube.com/watch?v=jAEPqjkjth4> `_
- `Tune: Distributed Hyperparameter Search | RISECamp 2018 <https://www.youtube.com/watch?v=38Yd_dXW51Q> `_
Slides
2020-05-26 08:39:34 -07:00
------
2019-12-02 19:59:23 -08:00
- `Talk given at UC Berkeley DS100 <https://docs.google.com/presentation/d/1sF5T_ePR9R6fAi2R6uxehHzXuieme63O2n_5i9m7mVE/edit?usp=sharing> `_
- `Talk given in October 2019 <https://docs.google.com/presentation/d/13K0JsogYQX3gUCGhmQ1PQ8HILwEDFysnq0cI2b88XbU/edit?usp=sharing> `_
- [Tune] `Talk given at RISECamp 2019 <https://docs.google.com/presentation/d/1v3IldXWrFNMK-vuONlSdEuM82fuGTrNUDuwtfx4axsQ/edit?usp=sharing> `_
2020-09-01 09:48:35 -07:00
Papers
------
2019-12-02 19:59:23 -08:00
2020-09-01 09:48:35 -07:00
- `Ray 1.0 Architecture whitepaper`_ **(new)**
2019-08-28 17:54:15 -07:00
- `RLlib paper`_
- `Tune paper`_
2020-09-01 09:48:35 -07:00
*Older papers:*
- `Ray paper`_
- `Ray HotOS paper`_
.. _`Ray 1.0 Architecture whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview
2019-08-28 17:54:15 -07:00
.. _`Ray paper`: https://arxiv.org/abs/1712.05889
.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
.. _`Tune paper`: https://arxiv.org/abs/1807.05118
2017-02-27 21:14:31 -08:00
.. toctree ::
2020-06-25 12:38:12 -07:00
:hidden:
2019-08-28 17:54:15 -07:00
:maxdepth: -1
2020-05-26 08:39:34 -07:00
:caption: Overview of Ray
2017-02-27 21:14:31 -08:00
2020-05-26 08:39:34 -07:00
ray-overview/index.rst
2018-03-12 00:52:00 -07:00
installation.rst
2017-02-27 21:14:31 -08:00
2017-03-04 23:06:02 -08:00
.. toctree ::
2020-06-25 12:38:12 -07:00
:hidden:
2019-08-28 17:54:15 -07:00
:maxdepth: -1
2019-12-02 19:59:23 -08:00
:caption: Ray Core
2020-02-11 23:17:30 -08:00
walkthrough.rst
2019-12-02 19:59:23 -08:00
using-ray.rst
2019-12-13 10:38:17 -08:00
configure.rst
2020-02-18 13:43:19 -08:00
Tutorial and Examples <auto_examples/overview.rst>
2019-08-05 23:33:14 -07:00
package-ref.rst
2018-03-08 09:18:09 -08:00
.. toctree ::
2020-06-25 12:38:12 -07:00
:hidden:
2020-06-26 09:29:22 -07:00
:maxdepth: -1
:caption: Ray Cluster
cluster/index.rst
cluster/launcher.rst
2020-08-28 19:57:21 -07:00
cluster/autoscaling.rst
2020-07-27 13:47:06 -07:00
cluster/cloud.rst
2020-06-26 09:29:22 -07:00
cluster/deploy.rst
.. toctree ::
2020-09-01 09:48:35 -07:00
:hidden:
2019-08-28 17:54:15 -07:00
:maxdepth: -1
2020-06-22 19:52:11 -05:00
:caption: Ray Serve
serve/index.rst
serve/key-concepts.rst
serve/tutorials/index.rst
serve/deployment.rst
serve/advanced.rst
2020-08-20 11:40:47 -07:00
serve/architecture.rst
2020-06-22 19:52:11 -05:00
serve/package-ref.rst
.. toctree ::
2020-06-25 12:38:12 -07:00
:hidden:
2020-06-22 19:52:11 -05:00
:maxdepth: -1
:caption: Ray Tune
2018-03-08 09:18:09 -08:00
2020-07-29 11:22:44 -07:00
tune/index.rst
tune/key-concepts.rst
tune/user-guide.rst
tune/tutorials/overview.rst
tune/examples/index.rst
2020-03-23 12:23:21 -07:00
tune/api_docs/overview.rst
2020-07-29 11:22:44 -07:00
tune/contrib.rst
2018-03-08 09:18:09 -08:00
.. toctree ::
2020-06-25 12:38:12 -07:00
:hidden:
2019-08-28 17:54:15 -07:00
:maxdepth: -1
2018-10-01 12:49:39 -07:00
:caption: RLlib
2018-03-08 09:18:09 -08:00
2017-12-06 18:17:51 -08:00
rllib.rst
2019-08-12 17:39:02 -07:00
rllib-toc.rst
2018-07-01 00:05:08 -07:00
rllib-training.rst
rllib-env.rst
rllib-models.rst
2019-04-07 00:36:18 -07:00
rllib-algorithms.rst
2019-01-03 15:15:36 +08:00
rllib-offline.rst
2018-07-08 18:46:52 -07:00
rllib-concepts.rst
2019-01-29 21:06:09 -08:00
rllib-examples.rst
2019-05-27 14:17:32 -07:00
rllib-package-ref.rst
2020-02-18 13:43:19 -08:00
rllib-dev.rst
2017-03-04 23:06:02 -08:00
2020-01-16 18:38:27 -08:00
.. toctree ::
2020-06-25 12:38:12 -07:00
:hidden:
2020-01-16 18:38:27 -08:00
:maxdepth: -1
2020-02-18 13:43:19 -08:00
:caption: Ray SGD
2020-01-16 18:38:27 -08:00
raysgd/raysgd.rst
2020-01-29 08:51:01 -08:00
raysgd/raysgd_pytorch.rst
raysgd/raysgd_tensorflow.rst
2020-06-01 15:48:15 -07:00
raysgd/raysgd_dataset.rst
2020-01-29 08:51:01 -08:00
raysgd/raysgd_ref.rst
2018-03-13 22:23:50 -07:00
.. toctree ::
2020-06-25 12:38:12 -07:00
:hidden:
2019-08-28 17:54:15 -07:00
:maxdepth: -1
2020-09-01 09:48:35 -07:00
:caption: Community Libraries
2018-03-13 22:23:50 -07:00
2019-12-29 21:40:58 -06:00
multiprocessing.rst
2020-01-27 16:35:48 -08:00
joblib.rst
2020-02-18 13:43:19 -08:00
iter.rst
pandas_on_ray.rst
2020-09-01 08:13:04 -07:00
dask-on-ray.rst
2018-03-13 22:23:50 -07:00
2020-08-06 16:16:29 -07:00
.. toctree ::
:hidden:
:maxdepth: -1
:caption: Ray Observability
ray-metrics.rst
2017-02-27 21:14:31 -08:00
.. toctree ::
2020-06-25 12:38:12 -07:00
:hidden:
:maxdepth: -1
:caption: Contributing
getting-involved.rst
.. toctree ::
:hidden:
2019-08-28 17:54:15 -07:00
:maxdepth: -1
2020-06-25 12:38:12 -07:00
:caption: Development and Ray Internals
2017-05-22 15:20:20 -07:00
2018-01-19 16:16:45 -08:00
development.rst
2020-09-01 09:48:35 -07:00
whitepaper.rst
2020-06-25 12:38:12 -07:00
debugging.rst
2018-01-25 21:40:52 -08:00
profiling.rst
2019-08-05 23:33:14 -07:00
fault-tolerance.rst