15 KiB
Configuration and Setup
The main process configuration is to be found here.
Stochastic Processes
We then proceed to initialize the stochastic processes.
python ../hops/sp.py -s stg.py
Linux ArLeenUX 5.14.15-zen1 x86_64 19:19:41 up 7:45, 2 users, load average: 0.63, 1.00, 1.18 impure ~/D/P/U/m/m/p/e/02_finite_temperature python ../hops/sp.py -s stg.py /home/hiro/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/hops/hops/util/bc f.py:185: UserWarning: this implementation uses mpmath to evaluate the zeta_function! for a be tter performance consider the 'OhmEnv' package warnings.warn( /home/hiro/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/hops/hops/util/bc f.py:228: UserWarning: this implementation uses mpmath to evaluate the zeta_function! for a be tter performance consider the 'OhmEnv' package warnings.warn( StocProc found in database 'SPCache' at '.' StocProc found in database 'SPCache' at '.'
The stochastic process is initialized and cached in ./SPCache
.
Hops Integration
We can use multiple avenues.
Local Integration
python ../hops/hi.py -s stg.py
Linux ArLeenUX 5.14.15-zen1 x86_64 16:47:19 up 5:13, 2 users, load average: 0.82, 0.96, 0.92 impure ~/D/P/U/m/m/p/e/02_finite_temperature python ../hops/hi.py -s stg.py run integrate /home/hiro/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/hops/hops/util/bc f.py:185: UserWarning: this implementation uses mpmath to evaluate the zeta_function! for a be tter performance consider the 'OhmEnv' package warnings.warn( /home/hiro/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/hops/hops/util/bc f.py:228: UserWarning: this implementation uses mpmath to evaluate the zeta_function! for a be tter performance consider the 'OhmEnv' package warnings.warn( init Hi class, use 464 equation is up event is False wait … [in server process] add args to server … [in server process] befor bring him up JobManager started on ArLeenUX:26524 (bytearray(b'HOPS26524')) hi server is up [in server process] set is_up is up event is now True [TET 9.61ms [0.0c/s] TTG – 0.0% ETA – ORT –]
/nix/store/00v56a021xv35zkdhr91dd4rbccpp2x0-python3-3.9.4-env/lib/python3.9/site-packages/jobm anager/jobmanager.py:130: UserWarning: num_threads could not be set, MKL / openblas not found warnings.warn("num_threads could not be set, MKL / openblas not found") /nix/store/00v56a021xv35zkdhr91dd4rbccpp2x0-python3-3.9.4-env/lib/python3.9/site-packages/jobm anager/jobmanager.py:130: UserWarning: num_threads could not be set, MKL / openblas not found warnings.warn("num_threads could not be set, MKL / openblas not found") /nix/store/00v56a021xv35zkdhr91dd4rbccpp2x0-python3-3.9.4-env/lib/python3.9/site-packages/jobm anager/jobmanager.py:130: UserWarning: num_threads could not be set, MKL / openblas not found warnings.warn("num_threads could not be set, MKL / openblas not found") /nix/store/00v56a021xv35zkdhr91dd4rbccpp2x0-python3-3.9.4-env/lib/python3.9/site-packages/jobm [TET 1.01s [0.0c/s] TTG – 0.0% ETA – ORT –] res_q #0 0/s 0kB|rem.:1, done:0, failed:0, prog.:0 w1:3.02s [27.7c/min] #1 - [TET 848.21ms [0.0c/s] TTG – 0.0% ETA – ORT –] w2:3.02s [0.0c/s] #0 - 3.03s [0.0c/s] #0 w3:3.02s [0.0c/s] #0 - 3.03s [0.0c/s] #0 w4:3.02s [0.0c/s] #0 - 3.03s [0.0c/s] #0 local res_q 0 365.1GB/s ,********************************ms————100%————ETA-20211111_16:47:25-ORT-3.01s] ,********************************ne:1, failed:0, prog.:0 ,** the client has finished early! stop the server ,******************************** ,******************************** [TET-4.02s–[19.9c/min]-TTG-0.00ms————100%————ETA-20211111_16:47:26-ORT-4.02s] res_q #0 0kB/s 7.18GB|rem.:0, done:1, failed:0, prog.:0 [in server process] server has joined!
############## in JM SERVER EXIT
HI_Server start at 2021-11-11 16:47:22.000943 | runtime 6.000e+00s HI_Server total number of jobs : 1
processed : 1 | ||
succeeded : 1 | ||
failed : 0 | ||
timing in sec: min 2.028e+00 | max 2.028e+00 | avr 2.028e+00 |
not processed : 0 | ||
queried : 0 | ||
not queried yet : 0 |
,* has joined server process is not running anymore (exit with 0)
And there we go. It is better to run the above command in a vterm-session.
Remote/Distributed Integration
We start the server locally.
python ../hops/hi.py -s stg.py server
Linux ArLeenUX 5.14.15-zen1 x86_64 19:28:43 up 7:54, 2 users, load average: 0.43, 0.70, 0.96 impure ~/D/P/U/m/m/p/e/02_finite_temperature python ../hops/hi.py -s stg.py server run server /home/hiro/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/hops/hops/util/bc f.py:185: UserWarning: this implementation uses mpmath to evaluate the zeta_function! for a be tter performance consider the 'OhmEnv' package warnings.warn( /home/hiro/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/hops/hops/util/bc f.py:228: UserWarning: this implementation uses mpmath to evaluate the zeta_function! for a be tter performance consider the 'OhmEnv' package warnings.warn( init Hi class, use 464 equation JobManager started on ArLeenUX:35254 (bytearray(b'SBM')) hi server is running [TET-00:03:39—–[2.2c/s]-TTG-0.00ms———100%———ETA-20211111_19:32:25-ORT-00:03:39] res_q #0 15.09GB/s 3.183TB|rem.:0, done:452, failed:0, prog.:0
############## in JM SERVER EXIT
HI_Server start at 2021-11-11 19:28:46.024888 | runtime 2.210e+02s HI_Server total number of jobs : 452
processed : 452 | ||
succeeded : 452 | ||
failed : 0 | ||
timing in sec: min 4.039e+00 | max 9.583e+00 | avr 5.470e+00 |
not processed : 0 | ||
queried : 0 | ||
not queried yet : 0 |
And jack in with a remote client. In this case my box at home.
Local Client
python ../hops/hi.py -s stg.py client
Linux ArLeenUX 5.14.15-zen1 x86_64 19:29:04 up 7:54, 2 users, load average: 0.46, 0.69, 0.95 impure ~/D/P/U/m/m/p/e/02_finite_temperature python ../hops/hi.py -s stg.py client run client /home/hiro/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/hops/hops/util/bc f.py:185: UserWarning: this implementation uses mpmath to evaluate the zeta_function! for a be tter performance consider the 'OhmEnv' package warnings.warn( /home/hiro/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/hops/hops/util/bc f.py:228: UserWarning: this implementation uses mpmath to evaluate the zeta_function! for a be tter performance consider the 'OhmEnv' package warnings.warn( timeout from args None start client on host ArLeenUX /nix/store/00v56a021xv35zkdhr91dd4rbccpp2x0-python3-3.9.4-env/lib/python3.9/site-packages/jobm anager/jobmanager.py:130: UserWarning: num_threads could not be set, MKL / openblas not found warnings.warn("num_threads could not be set, MKL / openblas not found") /nix/store/00v56a021xv35zkdhr91dd4rbccpp2x0-python3-3.9.4-env/lib/python3.9/site-packages/jobm anager/jobmanager.py:130: UserWarning: num_threads could not be set, MKL / openblas not found warnings.warn("num_threads could not be set, MKL / openblas not found") /nix/store/00v56a021xv35zkdhr91dd4rbccpp2x0-python3-3.9.4-env/lib/python3.9/site-packages/jobm anager/jobmanager.py:130: UserWarning: num_threads could not be set, MKL / openblas not found warnings.warn("num_threads could not be set, MKL / openblas not found") /nix/store/00v56a021xv35zkdhr91dd4rbccpp2x0-python3-3.9.4-env/lib/python3.9/site-packages/jobm anager/jobmanager.py:130: UserWarning: num_threads could not be set, MKL / openblas not found warnings.warn("num_threads could not be set, MKL / openblas not found") w1:00:03:30 [9.9c/min] #39 - [TET 00:00:12 [0.0c/s] TTG – 0.0% ETA – ORT –] w2:00:03:30 [9.7c/min] #38 - [TET 00:00:15 [0.0c/s] TTG – 0.0% ETA – ORT –] w3:00:03:30 [9.9c/min] #39 - [TET 00:00:13 [0.0c/s] TTG – 0.0% ETA – ORT –] w4:00:03:30 [9.9c/min] #38 - [TET 00:00:16 [0.0c/s] TTG – 0.0% ETA – ORT –] local res_q 0 319.4GB/s
Churn in with our local machine :).
Using the Data
Jupyter Setup
import numpy as np
import matplotlib.pyplot as plt
Check the Freshness of the Data
This doesn't check for modifications in this file though!
from deps import deps
deps.report()
Is fresh: True Overall Hash: a94d2f6f1da1923ebad6d66b736e2cd3207b3b0b
True
means that no important code has changed. In this case it even
checks if we have all the samples.
Load the Data
Stghelper seems to be what we want.
import stg_helper
import stg
import hopsflow
from hopsflow import util
Now let's load the system parameters.
system_params = stg_helper.get_system_param(stg)
system_params
H_dynamic : [] H_sys : Operator with format 'coo' and shape(2, 2) (0, 0) -0.5 (1, 1) 0.5 L : Operator with format 'coo' and shape(2, 2) (0, 1) 0.5 (1, 0) 0.5 bcf_scale : 0.8 g : [-0.02721057-0.00954633j -0.2649888 -0.24446953j -0.42474792-0.17263986j -0.34393704-1.88365973j -1.05844961+3.42100634j 3.63543978-3.87070472j 6.44166867+2.75995815j] psi0 : [0 1] w : [ 0.2139392 +2.65203434e-02j 0.9575499 +2.23185841e-01j 22.20034528+3.21863905e+01j 2.63533411+9.82383126e-01j 15.64050609+1.63103642e+01j 5.60430249+3.07507006e+00j 9.99803518+7.65897515e+00j] --- extra info --- T : 0.1 T_method : stoc_pot gw_info : None len_gw : None
Now we read the trajectory data.
class result:
hd = stg_helper.get_hierarchy_data(stg, read_only=True)
N = 5000
τ = hd.get_time()
# ρ = hd.get_rho_t()
ψ_1 = hd.aux_states
ψ = hd.stoc_traj
therm_y = hd.therm_y
Calculate System Energy
Simple sanity check.
e_sys = util.operator_expectation_ensemble(
iter(result.ψ), system_params.H_sys.todense(), result.N, stg.__HI_nonlinear
)
plt.plot(result.τ, e_sys)
/nix/store/k62y7zypgg51r34lyk8r0jzyrvnhkcc9-python3-3.9.4-env/lib/python3.9/site-packages/numpy/core/_asarray.py:102: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order)
<matplotlib.lines.Line2D | at | 0x7fbe92a1f160> |
Calculate the Heat Flow
Now let's calculate the heatflow. In this simple case it is engouh to know the first hierarchy states.
First we set up some parameter objects for the alogrithm.
hf_system = hopsflow.SystemParams(
system_params.L.todense(), stg.__g, stg.__w, stg.__bcf_scale, stg.__HI_nonlinear
)
η = stg_helper.get_eta(stg)
ξ = stg_helper.get_eta_therm(stg)
ξ.calc_deriv = True
hf_therm = hopsflow.ThermalParams(ξ=ξ, τ=result.τ, num_deriv=False)
Now we can apply our tooling to one trajectory for testing.
hf_sample_run = hopsflow.HOPSRun(result.ψ[0], result.ψ_1[0], hf_system)
hf_sample_run_therm = hopsflow.ThermalRunParams(hf_therm, result.therm_y[0])
first_flow = hopsflow.flow_trajectory_coupling(hf_sample_run, hf_system)
first_flow_therm = hopsflow.flow_trajectory_therm(hf_sample_run, hf_sample_run_therm)
plt.plot(result.τ, first_flow)
plt.plot(result.τ, first_flow_therm)
<matplotlib.lines.Line2D | at | 0x7fbe92932a60> |
And now for all trajectories.
full_flow = hopsflow.heat_flow_ensemble(
iter(result.ψ), iter(result.ψ_1), hf_system, result.N, (iter(result.therm_y), hf_therm)
)
plt.plot(result.τ, full_flow)
<matplotlib.lines.Line2D | at | 0x7fbe922a4400> |
We can integrate the energy change in the bath:
e_bath = util.integrate_array(-full_flow, result.τ)
plt.plot(result.τ, e_bath)
<matplotlib.lines.Line2D | at | 0x7fbe92484820> |
Calculate the Interaction Energy
First we calculate it from energy conservation.
e_int = 1/2 - e_sys - e_bath
plt.plot(result.τ, e_int)
/nix/store/k62y7zypgg51r34lyk8r0jzyrvnhkcc9-python3-3.9.4-env/lib/python3.9/site-packages/numpy/core/_asarray.py:102: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order)
<matplotlib.lines.Line2D | at | 0x7fbe921de190> |
And then from first principles:
e_int_ex = hopsflow.interaction_energy_ensemble(
result.ψ, result.ψ_1, hf_system, result.N, (result.therm_y, hf_therm)
)
And both together:
plt.plot(result.τ, e_int, label="integrated")
plt.plot(result.τ, e_int_ex, label="exact")
plt.legend()
/nix/store/k62y7zypgg51r34lyk8r0jzyrvnhkcc9-python3-3.9.4-env/lib/python3.9/site-packages/numpy/core/_asarray.py:102: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order) <matplotlib.legend.Legend at 0x7fbe9214d100>
Seems to work :P.
Update Dependency Hash
When we're done we update the dependency hash. This helps us to check if we have to recompute anything later on.
deps.write_hash()
deps.get_hash()[0]
a94d2f6f1da1923ebad6d66b736e2cd3207b3b0b