mirror of
https://github.com/vale981/master-thesis
synced 2025-03-06 10:31:37 -05:00
18 KiB
18 KiB
Setup
Jupyter
%load_ext autoreload
%autoreload 2
%load_ext jupyter_spaces
Matplotlib
import matplotlib
import matplotlib.pyplot as plt
#matplotlib.use("TkCairo", force=True)
%gui tk
%matplotlib inline
plt.style.use('ggplot')
Richard (old) HOPS
import hierarchyLib
import hierarchyData
import numpy as np
from stocproc.stocproc import StocProc_FFT
import bcf
from dataclasses import dataclass
import scipy
import scipy.misc
import scipy.signal
Auxiliary Definitions
σ1 = np.matrix([[0,1],[1,0]])
σ2 = np.matrix([[0,-1j],[1j,0]])
σ3 = np.matrix([[1,0],[0,-1]])
Model Setup
Basic parameters.
γ = 3 # coupling ratio
ω_c = 2 # center of spect. dens
δ = 2 # breadth BCF
t_max = 4
t_steps = 4000
k_max = 3
seed = 100
g = np.sqrt(δ)
H_s = σ3 + np.eye(2)
L = 1 / 2 * (σ1 - 1j * σ2) * γ
ψ_0 = np.array([1, 0])
W = ω_c * 1j + δ # exponent BCF
N = 1000
BCF
@dataclass
class CauchyBCF:
δ: float
ω_c: float
def I(self, ω):
return np.sqrt(self.δ) / (self.δ + (ω - self.ω_c) ** 2 / self.δ)
def __call__(self, τ):
return np.sqrt(self.δ) * np.exp(-1j * self.ω_c * τ - np.abs(τ) * self.δ)
def __bfkey__(self):
return self.δ, self.ω_c
α = CauchyBCF(δ, ω_c)
Plot
%%space plot
t = np.linspace(0, t_max, 1000)
ω = np.linspace(ω_c - 10, ω_c + 10, 1000)
fig, axs = plt.subplots(2)
axs[0].plot(t, np.real(α(t)))
axs[0].plot(t, np.imag(α(t)))
axs[1].plot(ω, α.I(ω))
<matplotlib.lines.Line2D | at | 0x7fad39fdcb20> |
<matplotlib.lines.Line2D | at | 0x7fad39fdcdc0> |
<matplotlib.lines.Line2D | at | 0x7fad39f78370> |
Hops setup
HierachyParam = hierarchyData.HiP(
k_max=k_max,
# g_scale=None,
# sample_method='random',
seed=seed,
nonlinear=True,
normalized=False,
# terminator=False,
result_type=hierarchyData.RESULT_TYPE_ALL,
# accum_only=None,
# rand_skip=None
)
Integration.
IntegrationParam = hierarchyData.IntP(
t_max=t_max,
t_steps=t_steps,
# integrator_name='zvode',
# atol=1e-8,
# rtol=1e-8,
# order=5,
# nsteps=5000,
# method='bdf',
# t_steps_skip=1
)
And now the system.
SystemParam = hierarchyData.SysP(
H_sys=H_s,
L=L,
psi0=ψ_0, # excited qubit
g=np.array([g]),
w=np.array([W]),
H_dynamic=[],
bcf_scale=1, # some coupling strength (scaling of the fit parameters 'g_i')
gw_hash=None, # this is used to load g,w from some database
len_gw=1,
)
The quantum noise.
Eta = StocProc_FFT(
α.I,
t_max,
α,
negative_frequencies=True,
seed=seed,
intgr_tol=1e-2,
intpl_tol=1e-2,
scale=1,
)
stocproc.stocproc - INFO - use neg freq stocproc.method_ft - INFO - get_dt_for_accurate_interpolation, please wait ... stocproc.method_ft - INFO - acc interp N 33 dt 1.44e-01 -> diff 7.57e-03 stocproc.method_ft - INFO - requires dt < 1.439e-01 stocproc.method_ft - INFO - get_N_a_b_for_accurate_fourier_integral, please wait ... stocproc.method_ft - INFO - J_w_min:1.00e-02 N 32 yields: interval [-1.47e+01,1.87e+01] diff 3.37e-01 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 32 yields: interval [-5.11e+01,5.51e+01] diff 6.70e-01 stocproc.method_ft - INFO - J_w_min:1.00e-02 N 64 yields: interval [-1.47e+01,1.87e+01] diff 3.37e-01 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 32 yields: interval [-1.66e+02,1.70e+02] diff 2.44e+00 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 64 yields: interval [-5.11e+01,5.51e+01] diff 1.11e-01 stocproc.method_ft - INFO - J_w_min:1.00e-02 N 128 yields: interval [-1.47e+01,1.87e+01] diff 3.37e-01 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-05 N 32 yields: interval [-5.30e+02,5.34e+02] diff 3.68e+00 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 64 yields: interval [-1.66e+02,1.70e+02] diff 1.34e+00 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 128 yields: interval [-5.11e+01,5.51e+01] diff 1.06e-01 stocproc.method_ft - INFO - J_w_min:1.00e-02 N 256 yields: interval [-1.47e+01,1.87e+01] diff 3.37e-01 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-06 N 32 yields: interval [-1.68e+03,1.68e+03] diff 4.19e+00 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 64 yields: interval [-5.30e+02,5.34e+02] diff 3.04e+00 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 128 yields: interval [-1.66e+02,1.70e+02] diff 4.07e-01 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 256 yields: interval [-5.11e+01,5.51e+01] diff 1.06e-01 stocproc.method_ft - INFO - J_w_min:1.00e-02 N 512 yields: interval [-1.47e+01,1.87e+01] diff 3.37e-01 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-07 N 32 yields: interval [-5.32e+03,5.32e+03] diff 4.36e+00 stocproc.method_ft - INFO - J_w_min:1.00e-06 N 64 yields: interval [-1.68e+03,1.68e+03] diff 3.94e+00 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 128 yields: interval [-5.30e+02,5.34e+02] diff 2.09e+00 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 256 yields: interval [-1.66e+02,1.70e+02] diff 3.72e-02 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 512 yields: interval [-5.11e+01,5.51e+01] diff 1.06e-01 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-08 N 32 yields: interval [-1.68e+04,1.68e+04] diff 4.42e+00 stocproc.method_ft - INFO - J_w_min:1.00e-07 N 64 yields: interval [-5.32e+03,5.32e+03] diff 4.28e+00 stocproc.method_ft - INFO - J_w_min:1.00e-06 N 128 yields: interval [-1.68e+03,1.68e+03] diff 3.50e+00 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 256 yields: interval [-5.30e+02,5.34e+02] diff 9.79e-01 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 512 yields: interval [-1.66e+02,1.70e+02] diff 3.36e-02 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 1024 yields: interval [-5.11e+01,5.51e+01] diff 1.06e-01 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-09 N 32 yields: interval [-5.32e+04,5.32e+04] diff 4.43e+00 stocproc.method_ft - INFO - J_w_min:1.00e-08 N 64 yields: interval [-1.68e+04,1.68e+04] diff 4.39e+00 stocproc.method_ft - INFO - J_w_min:1.00e-07 N 128 yields: interval [-5.32e+03,5.32e+03] diff 4.12e+00 stocproc.method_ft - INFO - J_w_min:1.00e-06 N 256 yields: interval [-1.68e+03,1.68e+03] diff 2.75e+00 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 512 yields: interval [-5.30e+02,5.34e+02] diff 2.16e-01 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 1024 yields: interval [-1.66e+02,1.70e+02] diff 3.36e-02 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 2048 yields: interval [-5.11e+01,5.51e+01] diff 1.06e-01 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-10 N 32 yields: interval [-1.68e+05,1.68e+05] diff 4.44e+00 stocproc.method_ft - INFO - J_w_min:1.00e-09 N 64 yields: interval [-5.32e+04,5.32e+04] diff 4.43e+00 stocproc.method_ft - INFO - J_w_min:1.00e-08 N 128 yields: interval [-1.68e+04,1.68e+04] diff 4.34e+00 stocproc.method_ft - INFO - J_w_min:1.00e-07 N 256 yields: interval [-5.32e+03,5.32e+03] diff 3.82e+00 stocproc.method_ft - INFO - J_w_min:1.00e-06 N 512 yields: interval [-1.68e+03,1.68e+03] diff 1.71e+00 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 1024 yields: interval [-5.30e+02,5.34e+02] diff 1.07e-02 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 2048 yields: interval [-1.66e+02,1.70e+02] diff 3.36e-02 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-11 N 32 yields: interval [-5.32e+05,5.32e+05] diff 4.44e+00 stocproc.method_ft - INFO - J_w_min:1.00e-10 N 64 yields: interval [-1.68e+05,1.68e+05] diff 4.44e+00 stocproc.method_ft - INFO - J_w_min:1.00e-09 N 128 yields: interval [-5.32e+04,5.32e+04] diff 4.41e+00 stocproc.method_ft - INFO - J_w_min:1.00e-08 N 256 yields: interval [-1.68e+04,1.68e+04] diff 4.24e+00 stocproc.method_ft - INFO - J_w_min:1.00e-07 N 512 yields: interval [-5.32e+03,5.32e+03] diff 3.28e+00 stocproc.method_ft - INFO - J_w_min:1.00e-06 N 1024 yields: interval [-1.68e+03,1.68e+03] diff 6.56e-01 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 2048 yields: interval [-5.30e+02,5.34e+02] diff 1.06e-02 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 4096 yields: interval [-1.66e+02,1.70e+02] diff 3.36e-02 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-12 N 32 yields: interval [-1.68e+06,1.68e+06] diff 4.44e+00 stocproc.method_ft - INFO - J_w_min:1.00e-11 N 64 yields: interval [-5.32e+05,5.32e+05] diff 4.44e+00 stocproc.method_ft - INFO - J_w_min:1.00e-10 N 128 yields: interval [-1.68e+05,1.68e+05] diff 4.43e+00 stocproc.method_ft - INFO - J_w_min:1.00e-09 N 256 yields: interval [-5.32e+04,5.32e+04] diff 4.38e+00 stocproc.method_ft - INFO - J_w_min:1.00e-08 N 512 yields: interval [-1.68e+04,1.68e+04] diff 4.04e+00 stocproc.method_ft - INFO - J_w_min:1.00e-07 N 1024 yields: interval [-5.32e+03,5.32e+03] diff 2.43e+00 stocproc.method_ft - INFO - J_w_min:1.00e-06 N 2048 yields: interval [-1.68e+03,1.68e+03] diff 9.69e-02 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 4096 yields: interval [-5.30e+02,5.34e+02] diff 1.06e-02 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 8192 yields: interval [-1.66e+02,1.70e+02] diff 3.36e-02 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-13 N 32 yields: interval [-5.32e+06,5.32e+06] diff 4.44e+00 stocproc.method_ft - INFO - J_w_min:1.00e-12 N 64 yields: interval [-1.68e+06,1.68e+06] diff 4.44e+00 stocproc.method_ft - INFO - J_w_min:1.00e-11 N 128 yields: interval [-5.32e+05,5.32e+05] diff 4.44e+00 stocproc.method_ft - INFO - J_w_min:1.00e-10 N 256 yields: interval [-1.68e+05,1.68e+05] diff 4.42e+00 stocproc.method_ft - INFO - J_w_min:1.00e-09 N 512 yields: interval [-5.32e+04,5.32e+04] diff 4.31e+00 stocproc.method_ft - INFO - J_w_min:1.00e-08 N 1024 yields: interval [-1.68e+04,1.68e+04] diff 3.67e+00 stocproc.method_ft - INFO - J_w_min:1.00e-07 N 2048 yields: interval [-5.32e+03,5.32e+03] diff 1.33e+00 stocproc.method_ft - INFO - J_w_min:1.00e-06 N 4096 yields: interval [-1.68e+03,1.68e+03] diff 3.37e-03 stocproc.method_ft - INFO - return, cause tol of 0.01 was reached stocproc.method_ft - INFO - requires dx < 8.212e-01 stocproc.stocproc - INFO - Fourier Integral Boundaries: [-1.680e+03, 1.684e+03] stocproc.stocproc - INFO - Number of Nodes : 4096 stocproc.stocproc - INFO - yields dx : 8.212e-01 stocproc.stocproc - INFO - yields dt : 1.868e-03 stocproc.stocproc - INFO - yields t_max : 7.649e+00
Actual Hops
Generate the key for binary caching.
hi_key = hierarchyData.HIMetaKey_type(
HiP=HierachyParam,
IntP=IntegrationParam,
SysP=SystemParam,
Eta=Eta,
EtaTherm=None,
)
Initialize Hierarchy.
myHierarchy = hierarchyLib.HI(hi_key, number_of_samples=N, desc="run a test case")
init Hi class, use 8 equation /home/hiro/Documents/Projects/UNI/master/masterarb/python/richard_hops/hierarchyLib.py:1058: UserWarning: sum_k_max is not implemented! DO SO BEFORE NEXT USAGE (use simplex).HierarchyParametersType does not yet know about sum_k_max warnings.warn(
Run the integration.
myHierarchy.integrate_simple(data_path="data", data_name="energy_flow_nl_2.data")
samples :0.0% integration :0.0% [2A[8m[0msamples :49.0% integration :0.0% [2A[8m[0msamples : 100% integration :0.0% [0A[8m[0m
Get the samples.
# to access the data the 'hi_key' is used to find the data in the hdf5 file
with hierarchyData.HIMetaData(hid_name="energy_flow_nl_2.data", hid_path="data") as metaData:
with metaData.get_HIData(hi_key, read_only=True) as data:
smp = data.get_samples()
print("{} samples found in database".format(smp))
τ = data.get_time()
rho_τ = data.get_rho_t()
s_proc = np.array(data.stoc_proc)
states = np.array(data.aux_states).copy()
ψ_1 = np.array(data.aux_states)[:, :, 0:2]
ψ_0 = np.array(data.stoc_traj)
y = np.array(data.y)
η = np.array(data.stoc_proc)
1000 samples found in database
Calculate energy.
%matplotlib inline
import qutip
energy = np.array([np.trace(ρ @ H_s).real for ρ in rho_τ])
plt.plot(τ, energy)
<matplotlib.lines.Line2D | at | 0x7fad39643880> |
%%space plot
plt.plot(τ, np.trace(rho_τ.T).real)
<matplotlib.lines.Line2D | at | 0x7fad3984bb20> |
Energy Flow
ψ_1.shape
1280 | 4000 | 2 |
Let's look at the norm.
plt.plot(τ, (ψ_0[0].conj() * ψ_0[0]).sum(axis=1).real)
<matplotlib.lines.Line2D | at | 0x7fad3930a970> |
And try to calculate the energy flow.
def flow_for_traj(ψ_0, ψ_1):
a = np.array((L @ ψ_0.T).T)
#return np.array(np.sum(ψ_0.conj() * ψ_0, axis=1)).flatten().real
return np.array(np.sqrt(δ) * 2 * (1j * -W * np.sum(a.conj() * ψ_1, axis=1)/np.sum(ψ_0.conj() * ψ_0, axis=1)).real).flatten()
def flow_for_traj_alt(ψ_0, y):
Eta.new_process(y)
eta_dot = scipy.misc.derivative(Eta, τ, dx=1e-8)
a = np.array((L @ ψ_0.T).T)
return -(
2j * eta_dot.conj() * np.array((np.sum(ψ_0.conj() * a, axis=1))).flatten()
).real
Now we calculate the average over all trajectories.
j = np.zeros_like(τ)
for i in range(0, N):
j += flow_for_traj(ψ_0[i], ψ_1[i])
j /= N
And do the same with the alternative implementation.
ja = np.zeros_like(τ)
for i in range(0, N):
ja += flow_for_traj_alt(ψ_0[i], y[i])
ja /= N
And plot it :)
%matplotlib inline
plt.plot(τ, j)
#plt.plot(τ, ja)
plt.show()
Let's calculate the integrated energy.
E_t = np.array([0] + [scipy.integrate.simpson(j[0:n], τ[0:n]) for n in range(1, len(τ))])
E_t[-1]
1.992784078082371
With this we can retrieve the energy of the interaction Hamiltonian.
E_I = 2 - energy - E_t
%%space plot
plt.rcParams['figure.figsize'] = [15, 10]
#plt.plot(τ, j, label="$J$", linestyle='--')
plt.plot(τ, E_t, label=r"$\langle H_{\mathrm{B}}\rangle$")
plt.plot(τ, E_I, label=r"$\langle H_{\mathrm{I}}\rangle$")
plt.plot(τ, energy, label=r"$\langle H_{\mathrm{S}}\rangle$")
plt.xlabel("τ")
plt.legend()
plt.show()
<matplotlib.lines.Line2D | at | 0x7ffa22a791c0> |
<matplotlib.lines.Line2D | at | 0x7ffa22a795e0> |
<matplotlib.lines.Line2D | at | 0x7ffa22a79970> |
Text(0.5, 0, 'τ') <matplotlib.legend.Legend at 0x7ffa22a793a0>
System + Interaction Energy
def h_si_for_traj(ψ_0, ψ_1):
a = np.array((L @ ψ_0.T).T)
b = np.array((H_s @ ψ_0.T).T)
E_i = np.array(2 * (-1j * np.sum(a.conj() * ψ_1, axis=1)).real).flatten()
E_s = np.array(np.sum(b.conj() * ψ_0, axis=1)).flatten().real
return (E_i + E_s)/np.sum(ψ_0.conj() * ψ_0, axis=1).real
def h_si_for_traj_alt(ψ_0, y):
Eta.new_process(y)
a = np.array((L.conj().T @ ψ_0.T).T)
b = np.array((H_s @ ψ_0.T).T)
E_i = np.array(2 * (Eta(τ) * 1j * np.sum(a.conj() * ψ_0, axis=1)).real).flatten()
E_s = np.array(np.sum(b.conj() * ψ_0, axis=1)).flatten().real
return E_i + E_s
e_si = np.zeros_like(τ)
for i in range(0, N):
e_si += h_si_for_traj(ψ_0[i], ψ_1[i])
e_si /= N
Not too bad…
plt.plot(τ, e_si)
plt.plot(τ, E_I + energy)
<matplotlib.lines.Line2D | at | 0x7ffa22ca8a00> |