mirror of
https://github.com/vale981/master-thesis
synced 2025-03-06 10:31:37 -05:00
15 KiB
15 KiB
Setup
Jupyter
%load_ext autoreload
%autoreload 2
%load_ext jupyter_spaces
The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload The jupyter_spaces extension is already loaded. To reload it, use: %reload_ext jupyter_spaces
Matplotlib
import matplotlib
import matplotlib.pyplot as plt
#matplotlib.use("TkCairo", force=True)
%gui tk
%matplotlib inline
plt.style.use('ggplot')
Richard (old) HOPS
import hierarchyLib
import hierarchyData
import numpy as np
from stocproc.stocproc import StocProc_FFT, StocProc_KLE
import bcf
from dataclasses import dataclass
import scipy
import scipy.misc
import scipy.signal
Auxiliary Definitions
σ1 = np.matrix([[0,1],[1,0]])
σ2 = np.matrix([[0,-1j],[1j,0]])
σ3 = np.matrix([[1,0],[0,-1]])
Model Setup
Basic parameters.
γ = 5 # coupling ratio
ω_c = 0 # center of spect. dens
δ = .1 # breadth BCF
t_max = 10
t_steps = 500
k_max = 6
seed = 100
H_s = σ3 + np.eye(2)
L = 1 / 2 * (σ1 - 1j * σ2) * γ
ψ_0 = np.array([1, 0])
W = ω_c * 1j + δ # exponent BCF
N = 100
BCF
@dataclass
class CauchyBCF:
δ: float
ω_c: float
def I(self, ω):
return np.sqrt(self.δ) / (self.δ + (ω - self.ω_c) ** 2 / self.δ)
def __call__(self, τ):
return np.sqrt(self.δ) * np.exp(-1j * self.ω_c * τ - np.abs(τ) * self.δ)
def __bfkey__(self):
return self.δ, self.ω_c
@dataclass
class GaussBCF:
σ: float
ω_c: float
def I(self, ω):
return (
np.exp(-(((ω - self.ω_c) / self.σ) ** 2) / 2)
,* 1
/ (np.sqrt(2 * np.pi) * self.σ) * np.pi
)
def __call__(self, τ):
return (
np.exp(-(((τ - self.ω_c) / self.σ) ** 2) / 2)
,* 1
/ (np.sqrt(2 * np.pi) * self.σ) * np.pi
)
#np.exp(1j * self.ω_c * τ - self.σ**2 * τ**2/2)
def __bfkey__(self):
return self.σ, self.ω_c
α = GaussBCF(δ, ω_c)
Plot
%%space plot
t = np.linspace(0, t_max, 1000)
ω = np.linspace(ω_c - 10, ω_c + 10, 1000)
fig, axs = plt.subplots(2)
axs[0].plot(t, np.real(α(t)))
axs[0].plot(t, np.imag(α(t)))
axs[1].plot(ω, α.I(ω))
<matplotlib.lines.Line2D | at | 0x7f6798323760> |
<matplotlib.lines.Line2D | at | 0x7f6799a6ea60> |
<matplotlib.lines.Line2D | at | 0x7f6799a6eca0> |
Hops setup
HierachyParam = hierarchyData.HiP(
k_max=k_max,
# g_scale=None,
# sample_method='random',
seed=seed,
nonlinear=False,
# normalized=False,
# terminator=False,
result_type=hierarchyData.RESULT_TYPE_ALL,
# accum_only=None,
# rand_skip=None
)
Integration.
IntegrationParam = hierarchyData.IntP(
t_max=t_max,
t_steps=t_steps,
# integrator_name='zvode',
# atol=1e-8,
# rtol=1e-8,
# order=5,
# nsteps=5000,
# method='bdf',
# t_steps_skip=1
)
And now the system.
SystemParam = hierarchyData.SysP(
H_sys=H_s,
L=L,
psi0=ψ_0, # excited qubit
g=np.array([np.sqrt(δ)]),
w=np.array([W]),
H_dynamic=[],
bcf_scale=1, # some coupling strength (scaling of the fit parameters 'g_i')
gw_hash=None, # this is used to load g,w from some database
len_gw=1,
)
The quantum noise.
Eta = StocProc_KLE(
α,
t_max,
seed=seed,
tol=1e-3
)
stocproc.method_kle - INFO - check 33 grid points stocproc.method_kle - INFO - check 65 grid points alpha_k is real alpha_k is real stocproc.method_kle - INFO - check 129 grid points alpha_k is real stocproc.method_kle - INFO - check 257 grid points alpha_k is real stocproc.method_kle - INFO - check 513 grid points alpha_k is real
KeyboardInterruptTraceback (most recent call last)
<ipython-input-777-b4dd44af7ffd> in <module>
----> 1 Eta = StocProc_KLE(
2 α,
3 t_max,
4 seed=seed,
5 tol=1e-3
/nix/store/7r8xg0344zc6lhyqqk2lynwbh8hy3934-python3-3.9.4-env/lib/python3.9/site-packages/stocproc/stocproc.py in __init__(self, alpha, t_max, tol, ng_fac, meth, diff_method, dm_random_samples, seed, align_eig_vec, scale)
286 key = alpha, t_max, tol
287
--> 288 sqrt_lambda_ui_fine, t = method_kle.auto_ng(
289 corr=alpha,
290 t_max=t_max,
/nix/store/7r8xg0344zc6lhyqqk2lynwbh8hy3934-python3-3.9.4-env/lib/python3.9/site-packages/stocproc/method_kle.py in auto_ng(corr, t_max, ngfac, meth, tol, diff_method, dm_random_samples, ret_eigvals, relative_difference)
543 ui_super_fine.reshape(1, -1)
544 )
--> 545 md = np.max(np.abs(diff) / abs_alpha_res)
546 time_calc_diff += time.time() - t0
547
KeyboardInterrupt:
Actual Hops
Generate the key for binary caching.
hi_key = hierarchyData.HIMetaKey_type(
HiP=HierachyParam,
IntP=IntegrationParam,
SysP=SystemParam,
Eta=Eta,
EtaTherm=None,
)
Initialize Hierarchy.
myHierarchy = hierarchyLib.HI(hi_key, number_of_samples=N, desc="run a test case")
init Hi class, use 14 equation /home/hiro/Documents/Projects/UNI/master/masterarb/python/richard_hops/hierarchyLib.py:1058: UserWarning: sum_k_max is not implemented! DO SO BEFORE NEXT USAGE (use simplex).HierarchyParametersType does not yet know about sum_k_max warnings.warn(
Run the integration.
myHierarchy.integrate_simple(data_name="energy_flow.data")
Get the samples.
# to access the data the 'hi_key' is used to find the data in the hdf5 file
with hierarchyData.HIMetaData(hid_name="energy_flow.data", hid_path=".") as metaData:
with metaData.get_HIData(hi_key, read_only=True) as data:
smp = data.get_samples()
print("{} samples found in database".format(smp))
τ = data.get_time()
rho_τ = data.get_rho_t()
s_proc = np.array(data.stoc_proc)
states = np.array(data.aux_states).copy()
ψ_1 = np.array(data.aux_states)[:, :, 0:2]
ψ_0 = np.array(data.stoc_traj)
y = np.array(data.y)
KeyErrorTraceback (most recent call last) ~/Documents/Projects/UNI/master/masterarb/python/richard_hops/hierarchyData.py in get_HIData_fname(self, key) 779 try: --> 780 hdf5_name = self.db[hashed_key][0] 781 except KeyError: /nix/store/7r8xg0344zc6lhyqqk2lynwbh8hy3934-python3-3.9.4-env/lib/python3.9/site-packages/sqlitedict.py in __getitem__(self, key) 243 if item is None: --> 244 raise KeyError(key) 245 return self.decode(item[0]) KeyError: '47177f42579f772ba59f8489393910e4b2e9b1f2567e082f6b944d00382a9df7793b33c105854cabecd012bc9f3fb59d' During handling of the above exception, another exception occurred: PicklingErrorTraceback (most recent call last) <ipython-input-781-12d991d6efe0> in <module> 1 # to access the data the 'hi_key' is used to find the data in the hdf5 file 2 with hierarchyData.HIMetaData(hid_name="energy_flow.data", hid_path=".") as metaData: ----> 3 with metaData.get_HIData(hi_key, read_only=True) as data: 4 smp = data.get_samples() 5 print("{} samples found in database".format(smp)) ~/Documents/Projects/UNI/master/masterarb/python/richard_hops/hierarchyData.py in get_HIData(self, key, read_only) 787 788 def get_HIData(self, key, read_only=False): --> 789 hdf5_name = self.get_HIData_fname(key) 790 791 if key.HiP.result_type == RESULT_TYPE_ZEROTH_ORDER_ONLY: ~/Documents/Projects/UNI/master/masterarb/python/richard_hops/hierarchyData.py in get_HIData_fname(self, key) 781 except KeyError: 782 hdf5_name = self._new_rand_file_name(pre=self.name + "_", end=".h5") --> 783 self.db[hashed_key] = (hdf5_name, key) 784 self.db.commit() 785 /nix/store/7r8xg0344zc6lhyqqk2lynwbh8hy3934-python3-3.9.4-env/lib/python3.9/site-packages/sqlitedict.py in __setitem__(self, key, value) 250 251 ADD_ITEM = 'REPLACE INTO "%s" (key, value) VALUES (?,?)' % self.tablename --> 252 self.conn.execute(ADD_ITEM, (key, self.encode(value))) 253 if self.autocommit: 254 self.commit() /nix/store/7r8xg0344zc6lhyqqk2lynwbh8hy3934-python3-3.9.4-env/lib/python3.9/site-packages/sqlitedict.py in encode(obj) 95 def encode(obj): 96 """Serialize an object using pickle to a binary format accepted by SQLite.""" ---> 97 return sqlite3.Binary(dumps(obj, protocol=PICKLE_PROTOCOL)) 98 99 PicklingError: Can't pickle <class '__main__.GaussBCF'>: it's not the same object as __main__.GaussBCF
Calculate energy.
energy = np.array([np.trace(ρ * H_s).real/np.trace(ρ).real for ρ in rho_τ])
plt.plot(τ, energy)
<matplotlib.lines.Line2D | at | 0x7f67981b3e80> |
%%space plot
plt.plot(τ, np.trace(rho_τ.T).real)
<matplotlib.lines.Line2D | at | 0x7f6799c2caf0> |
Energy Flow
ψ_1.shape
160 | 500 | 2 |
Let's look at the norm.
plt.plot(τ, (ψ_1[0].conj() * ψ_1[0]).sum(axis=1).real)
<matplotlib.lines.Line2D | at | 0x7f679a203700> |
And try to calculate the energy flow.
def flow_for_traj(ψ_0, ψ_1):
a = np.array((L @ ψ_0.T).T)
return np.array(2 * (1j * -W * np.sum(a.conj() * ψ_1, axis=1)).real).flatten()
def flow_for_traj_alt(ψ_0, y):
Eta.new_process(y)
eta_dot = scipy.misc.derivative(Eta, τ, dx=1e-8)
a = np.array((L @ ψ_0.T).T)
return -(2j * eta_dot.conj() *
np.array((np.sum(ψ_0.conj() * a, axis=1))).flatten()
).real
Now we calculate the average over all trajectories.
j = np.zeros_like(τ)
for i in range(0, N):
j += flow_for_traj(ψ_0[i], ψ_1[i])
j /= N
ValueErrorTraceback (most recent call last) <ipython-input-787-b9081128ed40> in <module> 1 j = np.zeros_like(τ) 2 for i in range(0, N): ----> 3 j += flow_for_traj(ψ_0[i], ψ_1[i]) 4 j /= N <ipython-input-786-c57f86a6b31b> in flow_for_traj(ψ_0, ψ_1) 1 def flow_for_traj(ψ_0, ψ_1): ----> 2 a = np.array((L @ ψ_0.T).T) 3 4 return np.array(2 * (1j * -W * np.sum(a.conj() * ψ_1, axis=1)).real).flatten() 5 ValueError: matmul: Input operand 1 does not have enough dimensions (has 0, gufunc core with signature (n?,k),(k,m?)->(n?,m?) requires 1)
And do the same with the alternative implementation.
ja = np.zeros_like(τ)
for i in range(0, N):
ja += flow_for_traj_alt(ψ_0[i], y[i])
ja /= N
ValueErrorTraceback (most recent call last) <ipython-input-788-5dc6ccf09941> in <module> 1 ja = np.zeros_like(τ) 2 for i in range(0, N): ----> 3 ja += flow_for_traj_alt(ψ_0[i], y[i]) 4 ja /= N <ipython-input-786-c57f86a6b31b> in flow_for_traj_alt(ψ_0, y) 8 Eta.new_process(y) 9 eta_dot = scipy.misc.derivative(Eta, τ, dx=1e-8) ---> 10 a = np.array((L @ ψ_0.T).T) 11 12 return -(2j * eta_dot.conj() * ValueError: matmul: Input operand 1 does not have enough dimensions (has 0, gufunc core with signature (n?,k),(k,m?)->(n?,m?) requires 1)
And plot it :)
%matplotlib inline
plt.plot(τ, j)
plt.plot(τ, ja)
plt.show()
\Let's calculate the integrated energy.
E_t = np.array([0] + [scipy.integrate.simpson(j[0:n], τ[0:n]) for n in range(1, len(τ))])
E_t[-1]
0.0
E_t = np.array([0] + [scipy.integrate.simpson(ja[0:n], τ[0:n]) for n in range(1, len(τ))])
E_t[-1]
0.0
With this we can retrieve the energy of the interaction Hamiltonian.
E_I = 2 - energy - E_t
%%space plot
plt.rcParams['figure.figsize'] = [10, 8]
#plt.plot(τ, j, label="$J$", linestyle='--')
plt.plot(τ, E_t, label=r"$\langle H_{\mathrm{B}}\rangle$")
plt.plot(τ, E_I, label=r"$\langle H_{\mathrm{I}}\rangle$")
plt.plot(τ, energy, label=r"$\langle H_{\mathrm{S}}\rangle$")
plt.xlabel("τ")
plt.legend()
plt.show()
<matplotlib.lines.Line2D | at | 0x7f6798fb5eb0> |
<matplotlib.lines.Line2D | at | 0x7f6798f8cb50> |
<matplotlib.lines.Line2D | at | 0x7f6798f75d60> |
Text(0.5, 0, 'τ') <matplotlib.legend.Legend at 0x7f6798f8ceb0>
Derivatives
Eta.new_process(y[0])
#plt.plot(τ, Eta(τ).real)
eta_dot = scipy.misc.derivative(Eta, τ, dx=1e-3)
plt.plot(τ, eta_dot)
/nix/store/7r8xg0344zc6lhyqqk2lynwbh8hy3934-python3-3.9.4-env/lib/python3.9/site-packages/numpy/core/_asarray.py:102: ComplexWarning: Casting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order)
<matplotlib.lines.Line2D | at | 0x7f678d445f40> |