master-thesis/project.org

6.9 KiB
Raw Blame History

Important Basics

Tasks

DONE Implement Basic HOPS

CLOCK: [2021-10-08 Fri 08:51] CLOCK: [2021-10-07 Thu 13:38][2021-10-07 Thu 17:50] => 4:12

Quantify Heat Transfer

DONE TeX notes

  • done with nonlinear

DONE verify that second hops state vanishes

NEXT Adapt New HOPS

TODO Time Derivative in stocproc

  • done for fft

TODO Generalize to Nonzero Temp

  • in cite:RichardDiss the noise hamiltonian method is described
  • b.c. only on system -> calculation should go through :)
  • not that easy, see notes
  • includes time derivative of stoch proc
  • idea: sample time derivative and integrate
  • not as bad as thought: no exponential form needed -> process smooth
  • one can get around the time derivative
  • i have implemented finite temperature here
TODO Think about transform

DONE Try to get Richards old HOPS working

  • code downloaded from here
  • it works see Energy Flow
  • interestingly with this model: only one aux state

DONE Test Nonlinear hops

TODO Generalize to two Baths

  • bath-bath correlations

TODO Analytic Verification

  • cummings
  • and pseudo-mode
TODO Valentin's QMB Gaussian states

DONE figure out why means involving the stoch. process are so bad

DONE VORTRAG

  • https://www.youtube.com/watch?v=5bRii85RT8s&list=PLJfdTiUFX4cNiK44-ScthZC2SNNrtUGu1&index=33;
  • where do i find out more about \(C^\ast\) algebras?
  • power \(\dot{W}(t):=\frac{d}{d t}\langle H(t)\rangle=\operatorname{Tr}\left[\dot{H}_{\mathrm{S}}(t) \rho_{\mathrm{SR}}(t)\right]=\operatorname{Tr}\left[\dot{H}_{\mathrm{S}}(t) \rho_{\mathrm{S}}(t)\right]\)
  • work is just the change of total energy
  • Definitions \(H_{\mathrm{S}}^{\circledast}(t, \beta):=-\beta^{-1} \log \left[\Lambda_{t} \mathrm{e}^{-\beta H_{\mathrm{S}}}\right]\left\{\begin{array}{l}E_{\mathrm{int}}(t):=\operatorname{Tr}\left\{\rho_{\mathrm{S}}(t)\left[H_{\mathrm{S}}^{\circledast}(t, \beta)+\beta \partial_{\beta} H_{\mathrm{S}}^{\circledast}(t, \beta)\right]\right\} \\ F(t):=\operatorname{Tr}\left\{\rho_{\mathrm{S}}(t)\left[H_{\mathrm{S}}^{\circledast}(t, \beta)+\beta^{-1} \log \rho_{\mathrm{S}}(t)\right]\right\} \\ S(t):=\operatorname{Tr}\left\{\rho_{\mathrm{S}}(t)\left[-\log \rho_{\mathrm{S}}(t)+\beta^{2} \partial_{\beta} H_{\mathrm{S}}^{\circledast}(t, \beta)\right]\right\}\end{array}\right.\)
  • Properties
  • Initial time: \(E_{\text {int }}(0):=\operatorname{Tr}\left[\rho_{\mathrm{S}}(0) H_{\mathrm{S}}\right] \quad\left(H_{\mathrm{S}}^{\circledast}(0, \beta)=H_{\mathrm{S}}\right)\)

TODO Compare with Rivas Method

DONE Find Rivas Paper

NEXT Make proper library

TODO Three Bath Fridge

Mail from Konstantin

here is the paper I had in mind when we talked about the three-bath fridge.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.070604

I don't know if this scenario has been considered in a strong coupling framework.

This fridge is working continuously. Maybe for HOPS a stroke-based model could be better to avoid long propagation to the steady state. Just as an example, here is an Otto-Fridge with strong coupling (I have not thou thoroughly read this paper)

https://link.springer.com/article/10.1140%2Fepjs%2Fs11734-021-00094-0

Find the Steady State

Matrix Eigenvals

  • see cite:Pan1999May

Relation between coerrelation time and hops depth

Ideas