mirror of
https://github.com/vale981/master-thesis
synced 2025-03-06 18:41:38 -05:00
1.6 KiB
1.6 KiB
%load_ext autoreload
%autoreload 2
import numpy as np
import stocproc as s
import matplotlib.pyplot as plt
class Kernels:
@classmethod
def constant(_, c):
def kernel(t):
shp = np.max(t.shape)
return np.ones((shp, shp)) * c
return kernel
@classmethod
def squared_exp(_, l):
def kernel(t):
return np.exp(-t ** 2 / l)
return kernel
@classmethod
def periodic(_, a, ω):
def kernel(t):
return np.exp(-np.abs(np.sin((t)) * ω) * a)
return kernel
@classmethod
def squares(_):
def kernel(t):
return t ** 2
return kernel
proc = s.StocProc_KLE(Kernels.squared_exp(10), 10)
stocproc.method_kle - INFO - check 33 grid points stocproc.method_kle - INFO - calc_ac 3.027%, fredholm 4.107%, integr_intp 1.991%, spline 8.315%, calc_diff 54.892%, rest 27.668% stocproc.method_kle - INFO - auto ng SUCCESSFUL max diff 8.097e-03 < tol 1.000e-02 ng 33 num evec 6 alpha_k is real
proc.new_process()
plt.plot(proc.t, np.imag(proc()))
plt.plot(proc.t, np.real(proc()))
<matplotlib.lines.Line2D | at | 0x7f79997659d0> |