mirror of
https://github.com/vale981/master-thesis
synced 2025-03-06 02:21:38 -05:00
20 KiB
20 KiB
Setup
Jupyter
%load_ext autoreload
%autoreload 2
%load_ext jupyter_spaces
The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload The jupyter_spaces extension is already loaded. To reload it, use: %reload_ext jupyter_spaces
Matplotlib
import matplotlib
import matplotlib.pyplot as plt
#matplotlib.use("TkCairo", force=True)
%gui tk
%matplotlib inline
plt.style.use('ggplot')
Richard (old) HOPS
import hierarchyLib
import hierarchyData
import numpy as np
from stocproc.stocproc import StocProc_FFT
import bcf
from dataclasses import dataclass, field
import scipy
import scipy.misc
import scipy.signal
import pickle
from scipy.special import gamma as gamma_func
from scipy.optimize import curve_fit
Auxiliary Definitions
σ1 = np.matrix([[0,1],[1,0]])
σ2 = np.matrix([[0,-1j],[1j,0]])
σ3 = np.matrix([[1,0],[0,-1]])
Model Setup
Basic parameters.
class params:
T = 2
t_max = 2
t_steps = int(t_max * 1/.001)
k_max = 10
N = 4000
seed = 100
dim = 2
H_s = σ3 + np.eye(dim)
L = σ2 #1 / 2 * (σ1 - 1j * σ2)
ψ_0 = np.array([0, 1])
s = 1
num_exp_t = 4
wc = 1
with open("good_fit_data_abs_brute_force", "rb") as f:
good_fit_data_abs = pickle.load(f)
alpha = 0.8
# _, g_tilde, w_tilde = good_fit_data_abs[(numExpFit, s)]
# g_tilde = np.array(g_tilde)
# w_tilde = np.array(w_tilde)
# g = 1 / np.pi * gamma_func(s + 1) * wc ** (s + 1) * np.asarray(g_tilde)
# w = wc * np.asarray(w_tilde)
bcf_scale = np.pi / 2 * alpha * wc ** (1 - s)
BCF and Thermal BCF
@dataclass
class CauchyBCF:
δ: float
wc: float
def I(self, ω):
return np.sqrt(self.δ) / (self.δ + (ω - self.wc) ** 2 / self.δ)
def __call__(self, τ):
return np.sqrt(self.δ) * np.exp(-1j * self.wc * τ - np.abs(τ) * self.δ)
def __bfkey__(self):
return self.δ, self.wc
α = bcf.OBCF(s=params.s, eta=1, gamma=params.wc)
I = bcf.OSD(s=params.s, eta=1, gamma=params.wc)
Fit
We now fit a sum of exponentials against the BCF.
from lmfit import minimize, Parameters
def α_apprx(τ, g, w):
return np.sum(
g[np.newaxis, :] * np.exp(-w[np.newaxis, :] * (τ[:, np.newaxis])), axis=1
)
def _fit():
def residual(fit_params, x, data):
resid = 0
w = np.array([fit_params[f"w{i}"] for i in range(params.num_exp_t)]) + 1j * np.array(
[fit_params[f"wi{i}"] for i in range(params.num_exp_t)]
)
g = np.array([fit_params[f"g{i}"] for i in range(params.num_exp_t)]) + 1j * np.array(
[fit_params[f"gi{i}"] for i in range(params.num_exp_t)]
)
resid = data - α_apprx(x, g, w)
return resid.view(float)
fit_params = Parameters()
for i in range(params.num_exp_t):
fit_params.add(f"g{i}", value=.1)
fit_params.add(f"gi{i}", value=.1)
fit_params.add(f"w{i}", value=.1)
fit_params.add(f"wi{i}", value=.1)
ts = np.linspace(0, params.t_max, 1000)
out = minimize(residual, fit_params, args=(ts, α(ts)))
w = np.array([out.params[f"w{i}"] for i in range(params.num_exp_t)]) + 1j * np.array(
[out.params[f"wi{i}"] for i in range(params.num_exp_t)]
)
g = np.array([out.params[f"g{i}"] for i in range(params.num_exp_t)]) + 1j * np.array(
[out.params[f"gi{i}"] for i in range(params.num_exp_t)]
)
return w, g
w, g = _fit()
Plot
Let's look a the result.
class bcfplt:
t = np.linspace(0, params.t_max, 1000)
ω = np.linspace(params.wc - 10, params.wc + 10, 1000)
fig, axs = plt.subplots(2)
axs[0].plot(t, np.real(α(t)))
axs[0].plot(t, np.imag(α(t)))
axs[0].plot(t, np.real(α_apprx(t, g, w)))
axs[0].plot(t, np.imag(α_apprx(t, g, w)))
axs[1].plot(ω, I(ω).real)
axs[1].plot(ω, I(ω).imag)
Seems ok for now.
Hops setup
HierachyParam = hierarchyData.HiP(
k_max=params.k_max,
# g_scale=None,
# sample_method='random',
seed=params.seed,
nonlinear=True,
normalized=False,
# terminator=False,
result_type=hierarchyData.RESULT_TYPE_ALL,
# accum_only=None,
# rand_skip=None
)
Integration.
IntegrationParam = hierarchyData.IntP(
t_max=params.t_max,
t_steps=params.t_steps,
# integrator_name='zvode',
# atol=1e-8,
# rtol=1e-8,
# order=5,
# nsteps=5000,
# method='bdf',
# t_steps_skip=1
)
And now the system.
SystemParam = hierarchyData.SysP(
H_sys=params.H_s,
L=params.L,
psi0=params.ψ_0, # excited qubit
g=np.array(g),
w=np.array(w),
H_dynamic=[],
bcf_scale=params.bcf_scale, # some coupling strength (scaling of the fit parameters 'g_i')
gw_hash=None, # this is used to load g,w from some database
len_gw=len(g),
)
The quantum noise.
Eta = StocProc_FFT(
I,
params.t_max,
α,
negative_frequencies=False,
seed=params.seed,
intgr_tol=1e-3,
intpl_tol=1e-3,
scale=params.bcf_scale,
)
stocproc.stocproc - INFO - non neg freq only stocproc.method_ft - INFO - get_dt_for_accurate_interpolation, please wait ... stocproc.method_ft - INFO - acc interp N 33 dt 1.25e-01 -> diff 4.49e-03 stocproc.method_ft - INFO - acc interp N 65 dt 6.25e-02 -> diff 1.08e-03 stocproc.method_ft - INFO - acc interp N 129 dt 3.12e-02 -> diff 2.69e-04 stocproc.method_ft - INFO - requires dt < 3.125e-02 stocproc.method_ft - INFO - get_N_a_b_for_accurate_fourier_integral, please wait ... stocproc.method_ft - INFO - J_w_min:1.00e-02 N 32 yields: interval [0.00e+00,6.47e+00] diff 9.83e-03 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 32 yields: interval [0.00e+00,9.12e+00] diff 3.11e-03 stocproc.method_ft - INFO - J_w_min:1.00e-02 N 64 yields: interval [0.00e+00,6.47e+00] diff 1.11e-02 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-04 N 32 yields: interval [0.00e+00,1.17e+01] diff 5.62e-03 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 64 yields: interval [0.00e+00,9.12e+00] diff 7.23e-04 stocproc.method_ft - INFO - return, cause tol of 0.001 was reached stocproc.method_ft - INFO - requires dx < 1.425e-01 stocproc.stocproc - INFO - Fourier Integral Boundaries: [0.000e+00, 2.422e+02] stocproc.stocproc - INFO - Number of Nodes : 2048 stocproc.stocproc - INFO - yields dx : 1.183e-01 stocproc.stocproc - INFO - yields dt : 2.594e-02 stocproc.stocproc - INFO - yields t_max : 5.310e+01
The sample trajectories are smooth.
%%space plot
ts = np.linspace(0, params.t_max, 1000)
Eta.new_process()
plt.plot(ts, Eta(ts).real)
<matplotlib.lines.Line2D | at | 0x7f6809bb80a0> |
And now the thermal noise.
EtaTherm = StocProc_FFT(
spectral_density=bcf.OFTDens(s=params.s, eta=1, gamma=params.wc, beta=1 / params.T),
t_max=params.t_max,
alpha=bcf.OFTCorr(s=params.s, eta=1, gamma=params.wc, beta=1 / params.T),
intgr_tol=1e-3,
intpl_tol=1e-3,
seed=params.seed,
negative_frequencies=False,
scale=params.bcf_scale,
)
stocproc.stocproc - INFO - non neg freq only stocproc.method_ft - INFO - get_dt_for_accurate_interpolation, please wait ... stocproc.method_ft - INFO - acc interp N 33 dt 1.25e-01 -> diff 8.75e-04 stocproc.method_ft - INFO - requires dt < 1.250e-01 stocproc.method_ft - INFO - get_N_a_b_for_accurate_fourier_integral, please wait ... stocproc.method_ft - INFO - J_w_min:1.00e-02 N 32 yields: interval [0.00e+00,4.10e+00] diff 9.15e-03 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 32 yields: interval [0.00e+00,5.82e+00] diff 4.69e-03 stocproc.method_ft - INFO - J_w_min:1.00e-02 N 64 yields: interval [0.00e+00,4.10e+00] diff 7.88e-03 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-04 N 32 yields: interval [0.00e+00,7.50e+00] diff 9.58e-03 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 64 yields: interval [0.00e+00,5.82e+00] diff 1.59e-03 stocproc.method_ft - INFO - J_w_min:1.00e-02 N 128 yields: interval [0.00e+00,4.10e+00] diff 7.56e-03 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-05 N 32 yields: interval [0.00e+00,9.16e+00] diff 1.27e-02 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 64 yields: interval [0.00e+00,7.50e+00] diff 2.38e-03 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 128 yields: interval [0.00e+00,5.82e+00] diff 9.47e-04 stocproc.method_ft - INFO - return, cause tol of 0.001 was reached stocproc.method_ft - INFO - requires dx < 4.544e-02 stocproc.stocproc - INFO - Fourier Integral Boundaries: [0.000e+00, 6.839e+01] stocproc.stocproc - INFO - Number of Nodes : 2048 stocproc.stocproc - INFO - yields dx : 3.340e-02 stocproc.stocproc - INFO - yields dt : 9.187e-02 stocproc.stocproc - INFO - yields t_max : 1.881e+02
The sample trajectories are smooth too.
%%space plot
ts = np.linspace(0, params.t_max, 1000)
EtaTherm.new_process()
plt.plot(ts, EtaTherm(ts).real)
<matplotlib.lines.Line2D | at | 0x7f68499d1cd0> |
Actual Hops
Generate the key for binary caching.
hi_key = hierarchyData.HIMetaKey_type(
HiP=HierachyParam,
IntP=IntegrationParam,
SysP=SystemParam,
Eta=Eta,
EtaTherm=EtaTherm,
)
Initialize Hierarchy.
myHierarchy = hierarchyLib.HI(hi_key, number_of_samples=params.N, desc="calculate the heat flow")
/home/hiro/Documents/Projects/UNI/master/masterarb/python/richard_hops/hierarchyLib.py:1058: UserWarning: sum_k_max is not implemented! DO SO BEFORE NEXT USAGE (use simplex).HierarchyParametersType does not yet know about sum_k_max warnings.warn( init Hi class, use 2002 equation
Run the integration.
myHierarchy.integrate_simple(data_path="data", data_name="energy_flow_therm_new_again_less.data")
[31msamples :[39m[92m[1m[[22m[39m[1mTET[22m 5.52ms [0.0c/s] [1mTTG[22m -- 0.0% [1mETA[22m -- [1mORT[22m --[1m[92m][0m [31mintegration :[39m[92m[1m[[22m[39m[1mTET[22m 5.32ms [0.0c/s] [1mTTG[22m -- 0.0% [1mETA[22m -- [1mORT[22m --[1m[92m][0m [2A[8m[0m[31msamples :[39m[92m[1m[[22m[1mE[22m-2.01s---[428[39m.3c/s] [1mG[22m 8.00s 21.5% [1mA[22m 20211104_10:14:07 [1mO[22m 00:00:10[1m[92m][0m [31mintegration :[39m[92m[1m[[22m[39m[1mTET[22m 7.05ms [0.0c/s] [1mTTG[22m -- 0.0% [1mETA[22m -- [1mORT[22m --[1m[92m][0m [2A[8m[0m[31msamples :[39m[92m[1m[[22m[1mE[22m-4.01s---[451.3c/s]-[1mG[22m-5.00s->[39m45.2% [1mA[22m 20211104_10:14:06 [1mO[22m 9.01s[1m[92m][0m [31mintegration :[39m[92m[1m[[22m[39m[1mTET[22m 19.33ms [0.0c/s] [1mTTG[22m -- 0.0% [1mETA[22m -- [1mORT[22m --[1m[92m][0m [2A[8m[0m[31msamples :[39m[92m[1m[[22m[1mE[22m-6.01s---[455.7c/s]-[1mG[22m-3.00s--68.5%---[1mA[22m-20211[39m104_10:14:06 [1mO[22m 9.01s[1m[92m][0m [31mintegration :[39m[92m[1m[[22m[39m[1mTET[22m 27.20ms [0.0c/s] [1mTTG[22m -- 0.0% [1mETA[22m -- [1mORT[22m --[1m[92m][0m [2A[8m[0m[31msamples :[39m[92m[1m[[22m[1mE[22m-8.02s---[456.6c/s]-[1mG[22m-1.00s--91.5%---[1mA[22m-20211104_10:14:06-[1mO[22m>[39m9.02s[1m[92m][0m [31mintegration :[39m[92m[1m[[22m[39m[1mTET[22m 19.95ms [0.0c/s] [1mTTG[22m -- 0.0% [1mETA[22m -- [1mORT[22m --[1m[92m][0m [2A[8m[0m[31msamples :[39m[92m[1m[[22m[1mE[22m-8.75s---[457.4c/s]-[1mG[22m-0.00ms--100%---[1mA[22m-20211104_10:14:06-[1mO[22m-8.75s[39m[1m[92m][0m [31mintegration :[39m[92m[1m[[22m[39m[1mTET[22m 4.00ms [0.0c/s] [1mTTG[22m -- 0.0% [1mETA[22m -- [1mORT[22m --[1m[92m][0m [0A[8m[0m
Get the samples.
# to access the data the 'hi_key' is used to find the data in the hdf5 file
class int_result:
with hierarchyData.HIMetaData(
hid_name="energy_flow_therm_new_again_less.data", hid_path="data"
) as metaData:
with metaData.get_HIData(hi_key, read_only=True) as data:
smp = data.get_samples()
print("{} samples found in database".format(smp))
τ = data.get_time()
rho_τ = data.get_rho_t()
#s_proc = np.array(data.stoc_proc)
#states = np.array(data.aux_states).copy()
ψ_1 = np.array(data.aux_states[:, :, 0 : params.num_exp_t * params.dim])
ψ_0 = np.array(data.stoc_traj)
y = np.array(data.y)
#η = np.array(data.stoc_proc)
temp_y = np.array(data.temp_y)
4000 samples found in database
Calculate energy.
%matplotlib inline
energy = np.einsum("ijk,kj", int_result.rho_τ,params.H_s).real
plt.plot(int_result.τ, energy)
<matplotlib.lines.Line2D | at | 0x7f68497db4f0> |
Energy Flow
int_result.ψ_1.shape
5120 | 2000 | 8 |
Let's look at the norm.
plt.plot(int_result.τ, (int_result.ψ_0[0].conj() * int_result.ψ_0[0]).sum(axis=1).real)
<matplotlib.lines.Line2D | at | 0x7f68497580d0> |
And try to calculate the energy flow.
def flow_for_traj(ψ_0, ψ_1, temp_y):
a = np.array((params.L @ ψ_0.T).T)
b = np.array(((params.L @ params.H_s - params.H_s @ params.L) @ ψ_0.T).T)
EtaTherm.new_process(temp_y)
η_dot = scipy.misc.derivative(EtaTherm, int_result.τ, dx=1e-3, order=3)
ψ_1 = (-w * g * params.bcf_scale)[None, :, None] * ψ_1.reshape(
params.t_steps, params.num_exp_t, params.dim
)
# return np.array(np.sum(ψ_0.conj() * ψ_0, axis=1)).flatten().real
j_0 = np.array(
2
,* (
1j
,* (np.sum(a.conj()[:, None, :] * ψ_1, axis=(1, 2)))
/ np.sum(ψ_0.conj() * ψ_0, axis=1)
).real
).flatten()
j_therm = -np.array(
2
,* (
(np.sum(a.conj() * ψ_0, axis=1)) * η_dot / np.sum(ψ_0.conj() * ψ_0, axis=1)
).real
).flatten()
shift_energy = (
2
,* (
EtaTherm(int_result.τ)
,* np.sum(a.conj() * ψ_0, axis=1)
/ np.sum(ψ_0.conj() * ψ_0, axis=1)
).real
).flatten()
shift_energy_normal = (
2
,* (1j *
EtaTherm(int_result.τ) *
(np.sum(b.conj() * ψ_0, axis=1))
/ np.sum(ψ_0.conj() * ψ_0, axis=1)
).real
).flatten()
j_therm_alt = np.gradient(shift_energy, int_result.τ, edge_order=2)
return j_0, j_therm, j_therm_alt + shift_energy_normal
Now we calculate the average over all trajectories.
class Flow:
j_0 = np.zeros_like(int_result.τ)
j_therm = np.zeros_like(int_result.τ)
j_therm_alt = np.zeros_like(int_result.τ)
for i in range(0, params.N):
dj, dj_therm, dj_therm_alt = flow_for_traj(
int_result.ψ_0[i], int_result.ψ_1[i], int_result.temp_y[i]
)
j_0 += dj
j_therm += dj_therm
j_therm_alt += dj_therm_alt
j_0 /= params.N
j_therm /= params.N
j_therm_alt /= params.N
j = j_0 + j_therm
And plot it :).
%matplotlib inline
plt.plot(int_result.τ, Flow.j_0, label=r"$j_0$")
plt.plot(int_result.τ, Flow.j_therm, label=r"$j_\mathrm{therm}$")
plt.plot(int_result.τ, Flow.j_therm_alt, label=r"$j_\mathrm{therm}^\mathrm{alt}$")
plt.plot(int_result.τ, Flow.j, label=r"$j$")
plt.legend()
<matplotlib.legend.Legend at 0x7f68496cda30>
Let's calculate the integrated energy.
E_t = np.array(
[0]
+ [
scipy.integrate.simpson(Flow.j[0:n], int_result.τ[0:n])
for n in range(1, len(int_result.τ))
]
)
E_t[-1]
0.1557882146641204
With this we can retrieve the energy of the interaction Hamiltonian.
E_I = - energy - E_t
%%space plot
#plt.plot(τ, j, label="$J$", linestyle='--')
plt.plot(int_result.τ, E_t, label=r"$\langle H_{\mathrm{B}}\rangle$")
plt.plot(int_result.τ, E_I, label=r"$\langle H_{\mathrm{I}}\rangle$")
plt.plot(int_result.τ, energy, label=r"$\langle H_{\mathrm{S}}\rangle$")
plt.xlabel("τ")
plt.legend()
plt.show()
<matplotlib.lines.Line2D | at | 0x7f68495ca970> |
<matplotlib.lines.Line2D | at | 0x7f68495cad60> |
<matplotlib.lines.Line2D | at | 0x7f6849572190> |
Text(0.5, 0, 'τ') <matplotlib.legend.Legend at 0x7f68495cabb0>
System + Interaction Energy
def h_si_for_traj(ψ_0, ψ_1, temp_y):
a = np.array((params.L @ ψ_0.T).T)
b = np.array((params.H_s @ ψ_0.T).T)
ψ_1 = (g*params.bcf_scale)[None, :, None] * ψ_1.reshape(
params.t_steps, params.num_exp_t, params.dim
)
EtaTherm.new_process(temp_y)
E_i = np.array(
2
,* (
-1j
,* np.sum(
a.conj()[:, None, :]
,* ψ_1,
axis=(1, 2),
)
).real
).flatten()
E_i += np.array(
2
,* (
EtaTherm(int_result.τ)
,* np.sum(
a.conj()
,* ψ_0,
axis=1,
)
).real
).flatten()
E_s = np.array(np.sum(b.conj() * ψ_0, axis=1)).flatten().real
return (E_i + E_s * 0) / np.sum(ψ_0.conj() * ψ_0, axis=1).real
e_si = np.zeros_like(int_result.τ)
for i in range(0, params.N):
e_si += h_si_for_traj(int_result.ψ_0[i], int_result.ψ_1[i], int_result.temp_y[i])
e_si /= params.N
Doesn't work out.
plt.plot(int_result.τ, e_si, label=r"direct")
plt.plot(int_result.τ, E_I)
plt.legend()
<matplotlib.legend.Legend at 0x7f68494a4e80>