mirror of
https://github.com/vale981/master-thesis
synced 2025-03-06 02:21:38 -05:00
18 KiB
18 KiB
Setup
Jupyter
%load_ext autoreload
%autoreload 2
%load_ext jupyter_spaces
Matplotlib
import matplotlib
import matplotlib.pyplot as plt
#matplotlib.use("TkCairo", force=True)
%gui tk
%matplotlib inline
plt.style.use('ggplot')
Richard (old) HOPS
import hierarchyLib
import hierarchyData
import numpy as np
from stocproc.stocproc import StocProc_FFT
import bcf
from dataclasses import dataclass
import scipy
import scipy.misc
import scipy.signal
Auxiliary Definitions
σ1 = np.matrix([[0,1],[1,0]])
σ2 = np.matrix([[0,-1j],[1j,0]])
σ3 = np.matrix([[1,0],[0,-1]])
Model Setup
Basic parameters.
γ = 5 # coupling ratio
ω_c = 1 # center of spect. dens
δ = 1 # breadth BCF
t_max = 10
t_steps = 500
k_max = 2
seed = 100
H_s = σ3 + np.eye(2)
L = 1 / 2 * (σ1 - 1j * σ2) * γ
ψ_0 = np.array([1, 0])
W = ω_c * 1j + δ # exponent BCF
N = 100
BCF
@dataclass
class CauchyBCF:
δ: float
ω_c: float
def I(self, ω):
return np.sqrt(self.δ) / (self.δ + (ω - self.ω_c) ** 2 / self.δ)
def __call__(self, τ):
return np.sqrt(self.δ) * np.exp(-1j * self.ω_c * τ - np.abs(τ) * self.δ)
def __bfkey__(self):
return self.δ, self.ω_c
α = CauchyBCF(δ, ω_c)
Plot
%%space plot
t = np.linspace(0, t_max, 1000)
ω = np.linspace(ω_c - 10, ω_c + 10, 1000)
fig, axs = plt.subplots(2)
axs[0].plot(t, np.real(α(t)))
axs[0].plot(t, np.imag(α(t)))
axs[1].plot(ω, α.I(ω))
<matplotlib.lines.Line2D | at | 0x7f32d17675e0> |
<matplotlib.lines.Line2D | at | 0x7f32d1767880> |
<matplotlib.lines.Line2D | at | 0x7f32d1767df0> |
Hops setup
HierachyParam = hierarchyData.HiP(
k_max=k_max,
# g_scale=None,
# sample_method='random',
seed=seed,
nonlinear=False,
# normalized=False,
# terminator=False,
result_type=hierarchyData.RESULT_TYPE_ALL,
# accum_only=None,
# rand_skip=None
)
Integration.
IntegrationParam = hierarchyData.IntP(
t_max=t_max,
t_steps=t_steps,
# integrator_name='zvode',
# atol=1e-8,
# rtol=1e-8,
# order=5,
# nsteps=5000,
# method='bdf',
# t_steps_skip=1
)
And now the system.
SystemParam = hierarchyData.SysP(
H_sys=H_s,
L=L,
psi0=ψ_0, # excited qubit
g=np.array([np.sqrt(δ)]),
w=np.array([W]),
H_dynamic=[],
bcf_scale=1, # some coupling strength (scaling of the fit parameters 'g_i')
gw_hash=None, # this is used to load g,w from some database
len_gw=1,
)
The quantum noise.
Eta = StocProc_FFT(
α.I,
t_max,
α,
negative_frequencies=True,
seed=seed,
intgr_tol=1e-2,
intpl_tol=1e-2,
scale=1,
)
stocproc.stocproc - INFO - use neg freq stocproc.method_ft - INFO - get_dt_for_accurate_interpolation, please wait ... stocproc.method_ft - INFO - acc interp N 33 dt 2.88e-01 -> diff 7.57e-03 stocproc.method_ft - INFO - requires dt < 2.878e-01 stocproc.method_ft - INFO - get_N_a_b_for_accurate_fourier_integral, please wait ... stocproc.method_ft - INFO - J_w_min:1.00e-02 N 32 yields: interval [-8.95e+00,1.09e+01] diff 2.01e-01 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 32 yields: interval [-3.06e+01,3.26e+01] diff 6.40e-01 stocproc.method_ft - INFO - J_w_min:1.00e-02 N 64 yields: interval [-8.95e+00,1.09e+01] diff 2.00e-01 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 32 yields: interval [-9.90e+01,1.01e+02] diff 1.90e+00 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 64 yields: interval [-3.06e+01,3.26e+01] diff 1.31e-01 stocproc.method_ft - INFO - J_w_min:1.00e-02 N 128 yields: interval [-8.95e+00,1.09e+01] diff 2.00e-01 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-05 N 32 yields: interval [-3.15e+02,3.17e+02] diff 2.68e+00 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 64 yields: interval [-9.90e+01,1.01e+02] diff 1.15e+00 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 128 yields: interval [-3.06e+01,3.26e+01] diff 6.33e-02 stocproc.method_ft - INFO - J_w_min:1.00e-02 N 256 yields: interval [-8.95e+00,1.09e+01] diff 2.00e-01 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-06 N 32 yields: interval [-9.99e+02,1.00e+03] diff 2.99e+00 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 64 yields: interval [-3.15e+02,3.17e+02] diff 2.29e+00 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 128 yields: interval [-9.90e+01,1.01e+02] diff 4.21e-01 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 256 yields: interval [-3.06e+01,3.26e+01] diff 6.33e-02 stocproc.method_ft - INFO - J_w_min:1.00e-02 N 512 yields: interval [-8.95e+00,1.09e+01] diff 2.00e-01 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-07 N 32 yields: interval [-3.16e+03,3.16e+03] diff 3.09e+00 stocproc.method_ft - INFO - J_w_min:1.00e-06 N 64 yields: interval [-9.99e+02,1.00e+03] diff 2.84e+00 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 128 yields: interval [-3.15e+02,3.17e+02] diff 1.66e+00 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 256 yields: interval [-9.90e+01,1.01e+02] diff 5.63e-02 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 512 yields: interval [-3.06e+01,3.26e+01] diff 6.33e-02 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-08 N 32 yields: interval [-1.00e+04,1.00e+04] diff 3.13e+00 stocproc.method_ft - INFO - J_w_min:1.00e-07 N 64 yields: interval [-3.16e+03,3.16e+03] diff 3.04e+00 stocproc.method_ft - INFO - J_w_min:1.00e-06 N 128 yields: interval [-9.99e+02,1.00e+03] diff 2.57e+00 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 256 yields: interval [-3.15e+02,3.17e+02] diff 8.81e-01 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 512 yields: interval [-9.90e+01,1.01e+02] diff 2.00e-02 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 1024 yields: interval [-3.06e+01,3.26e+01] diff 6.33e-02 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-09 N 32 yields: interval [-3.16e+04,3.16e+04] diff 3.14e+00 stocproc.method_ft - INFO - J_w_min:1.00e-08 N 64 yields: interval [-1.00e+04,1.00e+04] diff 3.11e+00 stocproc.method_ft - INFO - J_w_min:1.00e-07 N 128 yields: interval [-3.16e+03,3.16e+03] diff 2.95e+00 stocproc.method_ft - INFO - J_w_min:1.00e-06 N 256 yields: interval [-9.99e+02,1.00e+03] diff 2.10e+00 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 512 yields: interval [-3.15e+02,3.17e+02] diff 2.47e-01 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 1024 yields: interval [-9.90e+01,1.01e+02] diff 2.00e-02 stocproc.method_ft - INFO - J_w_min:1.00e-03 N 2048 yields: interval [-3.06e+01,3.26e+01] diff 6.33e-02 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-10 N 32 yields: interval [-1.00e+05,1.00e+05] diff 3.14e+00 stocproc.method_ft - INFO - J_w_min:1.00e-09 N 64 yields: interval [-3.16e+04,3.16e+04] diff 3.13e+00 stocproc.method_ft - INFO - J_w_min:1.00e-08 N 128 yields: interval [-1.00e+04,1.00e+04] diff 3.08e+00 stocproc.method_ft - INFO - J_w_min:1.00e-07 N 256 yields: interval [-3.16e+03,3.16e+03] diff 2.77e+00 stocproc.method_ft - INFO - J_w_min:1.00e-06 N 512 yields: interval [-9.99e+02,1.00e+03] diff 1.41e+00 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 1024 yields: interval [-3.15e+02,3.17e+02] diff 1.94e-02 stocproc.method_ft - INFO - J_w_min:1.00e-04 N 2048 yields: interval [-9.90e+01,1.01e+02] diff 2.00e-02 stocproc.method_ft - INFO - increasing N while shrinking the interval does lower the error -> try next level stocproc.method_ft - INFO - J_w_min:1.00e-11 N 32 yields: interval [-3.16e+05,3.16e+05] diff 3.14e+00 stocproc.method_ft - INFO - J_w_min:1.00e-10 N 64 yields: interval [-1.00e+05,1.00e+05] diff 3.14e+00 stocproc.method_ft - INFO - J_w_min:1.00e-09 N 128 yields: interval [-3.16e+04,3.16e+04] diff 3.12e+00 stocproc.method_ft - INFO - J_w_min:1.00e-08 N 256 yields: interval [-1.00e+04,1.00e+04] diff 3.02e+00 stocproc.method_ft - INFO - J_w_min:1.00e-07 N 512 yields: interval [-3.16e+03,3.16e+03] diff 2.44e+00 stocproc.method_ft - INFO - J_w_min:1.00e-06 N 1024 yields: interval [-9.99e+02,1.00e+03] diff 6.29e-01 stocproc.method_ft - INFO - J_w_min:1.00e-05 N 2048 yields: interval [-3.15e+02,3.17e+02] diff 6.32e-03 stocproc.method_ft - INFO - return, cause tol of 0.01 was reached stocproc.method_ft - INFO - requires dx < 3.088e-01 stocproc.stocproc - INFO - Fourier Integral Boundaries: [-3.152e+02, 3.172e+02] stocproc.stocproc - INFO - Number of Nodes : 2048 stocproc.stocproc - INFO - yields dx : 3.088e-01 stocproc.stocproc - INFO - yields dt : 9.935e-03 stocproc.stocproc - INFO - yields t_max : 2.034e+01
Actual Hops
Generate the key for binary caching.
hi_key = hierarchyData.HIMetaKey_type(
HiP=HierachyParam,
IntP=IntegrationParam,
SysP=SystemParam,
Eta=Eta,
EtaTherm=None,
)
Initialize Hierarchy.
myHierarchy = hierarchyLib.HI(hi_key, number_of_samples=N, desc="run a test case")
init Hi class, use 6 equation /home/hiro/Documents/Projects/UNI/master/masterarb/python/richard_hops/hierarchyLib.py:1058: UserWarning: sum_k_max is not implemented! DO SO BEFORE NEXT USAGE (use simplex).HierarchyParametersType does not yet know about sum_k_max warnings.warn(
Run the integration.
myHierarchy.integrate_simple(data_name="energy_flow_new.data", overwrite=True)
samples :0.0% integration :0.0% [2A[8m[0msamples :2.0% integration :40.4% [2A[8m[0msamples :5.0% integration :19.0% [2A[8m[0msamples :8.0% integration :4.6% [2A[8m[0msamples :11.0% integration :1.8% [2A[8m[0msamples :14.0% integration :1.0% [2A[8m[0msamples :16.0% integration :99.8% [2A[8m[0msamples :19.0% integration :99.8% [2A[8m[0msamples :23.0% integration :0.8% [2A[8m[0msamples :25.0% integration :87.8% [2A[8m[0msamples :28.0% integration :69.0% [2A[8m[0msamples :31.0% integration :62.0% [2A[8m[0msamples :34.0% integration :55.6% [2A[8m[0msamples :37.0% integration :49.8% [2A[8m[0msamples :40.0% integration :39.6% [2A[8m[0msamples :43.0% integration :39.4% [2A[8m[0msamples :46.0% integration :28.2% [2A[8m[0msamples :49.0% integration :28.0% [2A[8m[0msamples :52.0% integration :20.4% [2A[8m[0msamples :55.0% integration :17.2% [2A[8m[0msamples :58.0% integration :12.6% [2A[8m[0msamples :61.0% integration :18.6% [2A[8m[0msamples :64.0% integration :10.2% [2A[8m[0msamples :66.0% integration :82.8% [2A[8m[0msamples :69.0% integration :55.6% [2A[8m[0msamples :72.0% integration :44.8% [2A[8m[0msamples :75.0% integration :41.2% [2A[8m[0msamples :78.0% integration :33.2% [2A[8m[0msamples :81.0% integration :27.8% [2A[8m[0msamples :84.0% integration :30.0% [2A[8m[0msamples :87.0% integration :20.0% [2A[8m[0msamples :90.0% integration :11.2% [2A[8m[0msamples :93.0% integration :10.2% [2A[8m[0msamples :96.0% integration :7.8% [2A[8m[0msamples :99.0% integration :0.8% [2A[8m[0msamples : 100% integration :0.0% [0A[8m[0m
Get the samples.
# to access the data the 'hi_key' is used to find the data in the hdf5 file
with hierarchyData.HIMetaData(hid_name="energy_flow_new.data", hid_path=".") as metaData:
with metaData.get_HIData(hi_key, read_only=True) as data:
smp = data.get_samples()
print("{} samples found in database".format(smp))
τ = data.get_time()
rho_τ = data.get_rho_t()
s_proc = np.array(data.stoc_proc)
states = np.array(data.aux_states).copy()
ψ_1 = np.array(data.aux_states)[:, :, 0:2]
ψ_0 = np.array(data.stoc_traj)
y = np.array(data.y)
200 samples found in database
Calculate energy.
energy = np.array([np.trace(ρ * H_s).real/np.trace(ρ).real for ρ in rho_τ])
plt.plot(τ, energy)
<matplotlib.lines.Line2D | at | 0x7f32e51e6d00> |
%%space plot
plt.plot(τ, np.trace(rho_τ.T).real)
<matplotlib.lines.Line2D | at | 0x7f32e5154ca0> |
Energy Flow
ψ_1.shape
160 | 500 | 2 |
Let's look at the norm.
plt.plot(τ, (ψ_1[0].conj() * ψ_1[0]).sum(axis=1).real)
<matplotlib.lines.Line2D | at | 0x7f32e50c4a90> |
And try to calculate the energy flow.
def flow_for_traj(ψ_0, ψ_1):
a = np.array((L @ ψ_0.T).T)
return np.array(2 * (1j * -W * np.sum(a.conj() * ψ_1, axis=1)).real).flatten()
def flow_for_traj_alt(ψ_0, y):
Eta.new_process(y)
eta_dot = scipy.misc.derivative(Eta, τ, dx=1e-8)
a = np.array((L @ ψ_0.T).T)
return -(
2j * eta_dot.conj() * np.array((np.sum(ψ_0.conj() * a, axis=1))).flatten()
).real
Now we calculate the average over all trajectories.
j = np.zeros_like(τ)
for i in range(0, N):
j += flow_for_traj(ψ_0[i], ψ_1[i])
j /= N
And do the same with the alternative implementation.
ja = np.zeros_like(τ)
for i in range(0, N):
ja += flow_for_traj_alt(ψ_0[i], y[i])
ja /= N
And plot it :)
%matplotlib inline
plt.plot(τ, j)
#plt.plot(τ, ja)
plt.show()
Let's calculate the integrated energy.
E_t = np.array([0] + [scipy.integrate.simpson(j[0:n], τ[0:n]) for n in range(1, len(τ))])
E_t[-1]
1.999601704648048
With this we can retrieve the energy of the interaction Hamiltonian.
E_I = 2 - energy - E_t
%%space plot
plt.rcParams['figure.figsize'] = [15, 10]
#plt.plot(τ, j, label="$J$", linestyle='--')
plt.plot(τ, E_t, label=r"$\langle H_{\mathrm{B}}\rangle$")
plt.plot(τ, E_I, label=r"$\langle H_{\mathrm{I}}\rangle$")
plt.plot(τ, energy, label=r"$\langle H_{\mathrm{S}}\rangle$")
plt.xlabel("τ")
plt.legend()
plt.show()
<matplotlib.lines.Line2D | at | 0x7f32e501ec40> |
<matplotlib.lines.Line2D | at | 0x7f32e502d070> |
<matplotlib.lines.Line2D | at | 0x7f32e502d3a0> |
Text(0.5, 0, 'τ') <matplotlib.legend.Legend at 0x7f32e50892e0>
System + Interaction Energy
def h_si_for_traj(ψ_0, ψ_1):
a = np.array((L @ ψ_0.T).T)
b = np.array((H_s @ ψ_0.T).T)
E_i = np.array(2 * (-1j * np.sum(a.conj() * ψ_1, axis=1)).real).flatten()
E_s = np.array(np.sum(b.conj() * ψ_0, axis=1)).flatten().real
return E_i + E_s
def h_si_for_traj_alt(ψ_0, y):
Eta.new_process(y)
a = np.array((L.conj().T @ ψ_0.T).T)
b = np.array((H_s @ ψ_0.T).T)
E_i = np.array(2 * (Eta(τ) * 1j * np.sum(a.conj() * ψ_0, axis=1)).real).flatten()
E_s = np.array(np.sum(b.conj() * ψ_0, axis=1)).flatten().real
return E_i + E_s
e_si = np.zeros_like(τ)
for i in range(0, N):
e_si += h_si_for_traj(ψ_0[i], ψ_1[i])
e_si /= N
Checks out.
plt.plot(τ, e_si)
plt.plot(τ, E_I + energy)
<matplotlib.lines.Line2D | at | 0x7f32e4ebbc10> |