mirror of
https://github.com/vale981/master-thesis
synced 2025-03-04 17:41:43 -05:00
ok, lets try stronger coupling
This commit is contained in:
parent
b26595cda3
commit
3fd77e92f8
2 changed files with 16 additions and 16 deletions
|
@ -145,15 +145,15 @@ def anti_zeno_engine(
|
|||
|
||||
model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_s, τ_off, n, Δ_switch) = anti_zeno_engine(
|
||||
Δ=1.3,
|
||||
ε=.5 ,
|
||||
ε=.5,
|
||||
ω_c=0.2,
|
||||
ε_couple=0.7,
|
||||
n=10,
|
||||
n=3,
|
||||
detune=-0.19,
|
||||
ω_0=2,
|
||||
T_c=3,
|
||||
T_h=11,
|
||||
δ=[.1] * 2,
|
||||
δ=[1] * 2,
|
||||
γ=0.5 / 10,
|
||||
switch_cycles=1,
|
||||
therm_initial_state=False,
|
||||
|
@ -211,16 +211,16 @@ plt.plot(model.t, ut.smoothen(model.t, ρ_ee, frac=.06, it=0))
|
|||
|
||||
with aux.get_data(model) as data:
|
||||
_, ax = plt.subplots()
|
||||
# fs.plot_with_σ(model.t, model.bath_energy(data), bath=0, ax=ax)
|
||||
# fs.plot_with_σ(model.t, model.bath_energy(data), bath=1, ax=ax)
|
||||
fs.plot_with_σ(model.t, model.bath_energy(data), bath=0, ax=ax)
|
||||
fs.plot_with_σ(model.t, model.bath_energy(data), bath=1, ax=ax)
|
||||
#fs.plot_with_σ(model.t, model.bath_energy(data).sum_baths(), ax=ax)
|
||||
|
||||
fs.plot_with_σ(model.t, model.total_energy(data), ax=ax)
|
||||
#fs.plot_with_σ(model.t, model.total_energy(data), ax=ax)
|
||||
#fs.plot_with_σ(model.t, model.interaction_energy(data).for_bath(1), ax=ax)
|
||||
|
||||
#fs.plot_with_σ(model.t, model.system_energy(data), ax=ax)
|
||||
#fs.plot_with_σ(model.t, model.system_energy(data) + model.bath_energy(data).sum_baths(), ax=ax)
|
||||
ax.plot(model.t, ut.smoothen(model.t, model.total_energy(data).value, frac=.1))
|
||||
#ax.plot(model.t, ut.smoothen(model.t, model.total_energy(data).value, frac=.1))
|
||||
#ax.plot(model.t, np.gradient(model.total_energy(data).value))
|
||||
|
||||
ts_begin = ((τ_c + τ_off) * np.arange(0, n) - Δ_switch)
|
||||
|
|
|
@ -25,7 +25,7 @@ Init ray and silence stocproc.
|
|||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: RayContext(dashboard_url='', python_version='3.9.13', ray_version='1.13.0', ray_commit='e4ce38d001dbbe09cd21c497fedd03d692b2be3e', address_info={'node_ip_address': '141.30.17.225', 'raylet_ip_address': '141.30.17.225', 'redis_address': None, 'object_store_address': '/tmp/ray/session_2022-06-24_15-06-52_296364_396466/sockets/plasma_store', 'raylet_socket_name': '/tmp/ray/session_2022-06-24_15-06-52_296364_396466/sockets/raylet', 'webui_url': '', 'session_dir': '/tmp/ray/session_2022-06-24_15-06-52_296364_396466', 'metrics_export_port': 61004, 'gcs_address': '141.30.17.225:47993', 'address': '141.30.17.225:47993', 'node_id': 'ed43d6aa4535a1f23b7d0d0dd45687a7221189a23e04487a355d297b'})
|
||||
: RayContext(dashboard_url='', python_version='3.9.13', ray_version='1.13.0', ray_commit='e4ce38d001dbbe09cd21c497fedd03d692b2be3e', address_info={'node_ip_address': '141.30.17.225', 'raylet_ip_address': '141.30.17.225', 'redis_address': None, 'object_store_address': '/tmp/ray/session_2022-06-27_13-53-20_654030_8907/sockets/plasma_store', 'raylet_socket_name': '/tmp/ray/session_2022-06-27_13-53-20_654030_8907/sockets/raylet', 'webui_url': '', 'session_dir': '/tmp/ray/session_2022-06-27_13-53-20_654030_8907', 'metrics_export_port': 62418, 'gcs_address': '141.30.17.225:62248', 'address': '141.30.17.225:62248', 'node_id': '6d4fbe591fb595ea55c2c527d1c4db5b6da8a62057f3c7403b87f1a8'})
|
||||
|
||||
#+begin_src jupyter-python :results none
|
||||
from hops.util.logging_setup import logging_setup
|
||||
|
@ -165,15 +165,15 @@ Init ray and silence stocproc.
|
|||
#+begin_src jupyter-python
|
||||
model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_s, τ_off, n, Δ_switch) = anti_zeno_engine(
|
||||
Δ=1.3,
|
||||
ε=.5 ,
|
||||
ε=.5,
|
||||
ω_c=0.2,
|
||||
ε_couple=0.7,
|
||||
n=10,
|
||||
n=3,
|
||||
detune=-0.19,
|
||||
ω_0=2,
|
||||
T_c=3,
|
||||
T_h=11,
|
||||
δ=[.1] * 2,
|
||||
δ=[1] * 2,
|
||||
γ=0.5 / 10,
|
||||
switch_cycles=1,
|
||||
therm_initial_state=False,
|
||||
|
@ -367,21 +367,21 @@ We need the time points where we sample the total energy.
|
|||
#+begin_src jupyter-python
|
||||
with aux.get_data(model) as data:
|
||||
_, ax = plt.subplots()
|
||||
# fs.plot_with_σ(model.t, model.bath_energy(data), bath=0, ax=ax)
|
||||
# fs.plot_with_σ(model.t, model.bath_energy(data), bath=1, ax=ax)
|
||||
fs.plot_with_σ(model.t, model.bath_energy(data), bath=0, ax=ax)
|
||||
fs.plot_with_σ(model.t, model.bath_energy(data), bath=1, ax=ax)
|
||||
#fs.plot_with_σ(model.t, model.bath_energy(data).sum_baths(), ax=ax)
|
||||
|
||||
fs.plot_with_σ(model.t, model.total_energy(data), ax=ax)
|
||||
#fs.plot_with_σ(model.t, model.total_energy(data), ax=ax)
|
||||
#fs.plot_with_σ(model.t, model.interaction_energy(data).for_bath(1), ax=ax)
|
||||
|
||||
#fs.plot_with_σ(model.t, model.system_energy(data), ax=ax)
|
||||
#fs.plot_with_σ(model.t, model.system_energy(data) + model.bath_energy(data).sum_baths(), ax=ax)
|
||||
ax.plot(model.t, ut.smoothen(model.t, model.total_energy(data).value, frac=.1))
|
||||
#ax.plot(model.t, ut.smoothen(model.t, model.total_energy(data).value, frac=.1))
|
||||
#ax.plot(model.t, np.gradient(model.total_energy(data).value))
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
[[file:./.ob-jupyter/20bba0288df8bbbc25fb66e7f1ac29e453a9edf1.svg]]
|
||||
[[file:./.ob-jupyter/59c645c188bb0fbc31e34820aacd6233e0608688.svg]]
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue