diff --git a/python/energy_flow_proper/10_antizeno_engine/10_first_anti_zeno.py b/python/energy_flow_proper/10_antizeno_engine/10_first_anti_zeno.py index acd24e0..c507fa4 100644 --- a/python/energy_flow_proper/10_antizeno_engine/10_first_anti_zeno.py +++ b/python/energy_flow_proper/10_antizeno_engine/10_first_anti_zeno.py @@ -145,15 +145,15 @@ def anti_zeno_engine( model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_s, τ_off, n, Δ_switch) = anti_zeno_engine( Δ=1.3, - ε=.5 , + ε=.5, ω_c=0.2, ε_couple=0.7, - n=10, + n=3, detune=-0.19, ω_0=2, T_c=3, T_h=11, - δ=[.1] * 2, + δ=[1] * 2, γ=0.5 / 10, switch_cycles=1, therm_initial_state=False, @@ -211,16 +211,16 @@ plt.plot(model.t, ut.smoothen(model.t, ρ_ee, frac=.06, it=0)) with aux.get_data(model) as data: _, ax = plt.subplots() - # fs.plot_with_σ(model.t, model.bath_energy(data), bath=0, ax=ax) - # fs.plot_with_σ(model.t, model.bath_energy(data), bath=1, ax=ax) + fs.plot_with_σ(model.t, model.bath_energy(data), bath=0, ax=ax) + fs.plot_with_σ(model.t, model.bath_energy(data), bath=1, ax=ax) #fs.plot_with_σ(model.t, model.bath_energy(data).sum_baths(), ax=ax) - fs.plot_with_σ(model.t, model.total_energy(data), ax=ax) + #fs.plot_with_σ(model.t, model.total_energy(data), ax=ax) #fs.plot_with_σ(model.t, model.interaction_energy(data).for_bath(1), ax=ax) #fs.plot_with_σ(model.t, model.system_energy(data), ax=ax) #fs.plot_with_σ(model.t, model.system_energy(data) + model.bath_energy(data).sum_baths(), ax=ax) - ax.plot(model.t, ut.smoothen(model.t, model.total_energy(data).value, frac=.1)) + #ax.plot(model.t, ut.smoothen(model.t, model.total_energy(data).value, frac=.1)) #ax.plot(model.t, np.gradient(model.total_energy(data).value)) ts_begin = ((τ_c + τ_off) * np.arange(0, n) - Δ_switch) diff --git a/python/energy_flow_proper/10_antizeno_engine/anti_zeno_engine.org b/python/energy_flow_proper/10_antizeno_engine/anti_zeno_engine.org index b90b43a..2dd55d7 100644 --- a/python/energy_flow_proper/10_antizeno_engine/anti_zeno_engine.org +++ b/python/energy_flow_proper/10_antizeno_engine/anti_zeno_engine.org @@ -25,7 +25,7 @@ Init ray and silence stocproc. #+end_src #+RESULTS: -: RayContext(dashboard_url='', python_version='3.9.13', ray_version='1.13.0', ray_commit='e4ce38d001dbbe09cd21c497fedd03d692b2be3e', address_info={'node_ip_address': '141.30.17.225', 'raylet_ip_address': '141.30.17.225', 'redis_address': None, 'object_store_address': '/tmp/ray/session_2022-06-24_15-06-52_296364_396466/sockets/plasma_store', 'raylet_socket_name': '/tmp/ray/session_2022-06-24_15-06-52_296364_396466/sockets/raylet', 'webui_url': '', 'session_dir': '/tmp/ray/session_2022-06-24_15-06-52_296364_396466', 'metrics_export_port': 61004, 'gcs_address': '141.30.17.225:47993', 'address': '141.30.17.225:47993', 'node_id': 'ed43d6aa4535a1f23b7d0d0dd45687a7221189a23e04487a355d297b'}) +: RayContext(dashboard_url='', python_version='3.9.13', ray_version='1.13.0', ray_commit='e4ce38d001dbbe09cd21c497fedd03d692b2be3e', address_info={'node_ip_address': '141.30.17.225', 'raylet_ip_address': '141.30.17.225', 'redis_address': None, 'object_store_address': '/tmp/ray/session_2022-06-27_13-53-20_654030_8907/sockets/plasma_store', 'raylet_socket_name': '/tmp/ray/session_2022-06-27_13-53-20_654030_8907/sockets/raylet', 'webui_url': '', 'session_dir': '/tmp/ray/session_2022-06-27_13-53-20_654030_8907', 'metrics_export_port': 62418, 'gcs_address': '141.30.17.225:62248', 'address': '141.30.17.225:62248', 'node_id': '6d4fbe591fb595ea55c2c527d1c4db5b6da8a62057f3c7403b87f1a8'}) #+begin_src jupyter-python :results none from hops.util.logging_setup import logging_setup @@ -165,15 +165,15 @@ Init ray and silence stocproc. #+begin_src jupyter-python model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_s, τ_off, n, Δ_switch) = anti_zeno_engine( Δ=1.3, - ε=.5 , + ε=.5, ω_c=0.2, ε_couple=0.7, - n=10, + n=3, detune=-0.19, ω_0=2, T_c=3, T_h=11, - δ=[.1] * 2, + δ=[1] * 2, γ=0.5 / 10, switch_cycles=1, therm_initial_state=False, @@ -367,21 +367,21 @@ We need the time points where we sample the total energy. #+begin_src jupyter-python with aux.get_data(model) as data: _, ax = plt.subplots() - # fs.plot_with_σ(model.t, model.bath_energy(data), bath=0, ax=ax) - # fs.plot_with_σ(model.t, model.bath_energy(data), bath=1, ax=ax) + fs.plot_with_σ(model.t, model.bath_energy(data), bath=0, ax=ax) + fs.plot_with_σ(model.t, model.bath_energy(data), bath=1, ax=ax) #fs.plot_with_σ(model.t, model.bath_energy(data).sum_baths(), ax=ax) - fs.plot_with_σ(model.t, model.total_energy(data), ax=ax) + #fs.plot_with_σ(model.t, model.total_energy(data), ax=ax) #fs.plot_with_σ(model.t, model.interaction_energy(data).for_bath(1), ax=ax) #fs.plot_with_σ(model.t, model.system_energy(data), ax=ax) #fs.plot_with_σ(model.t, model.system_energy(data) + model.bath_energy(data).sum_baths(), ax=ax) - ax.plot(model.t, ut.smoothen(model.t, model.total_energy(data).value, frac=.1)) + #ax.plot(model.t, ut.smoothen(model.t, model.total_energy(data).value, frac=.1)) #ax.plot(model.t, np.gradient(model.total_energy(data).value)) #+end_src #+RESULTS: -[[file:./.ob-jupyter/20bba0288df8bbbc25fb66e7f1ac29e453a9edf1.svg]] +[[file:./.ob-jupyter/59c645c188bb0fbc31e34820aacd6233e0608688.svg]]