mirror of
https://github.com/vale981/master-thesis
synced 2025-03-04 17:41:43 -05:00
norm estimate updates
This commit is contained in:
parent
eb2cfce996
commit
0c1b268ebe
2 changed files with 118 additions and 3 deletions
Binary file not shown.
|
@ -239,7 +239,122 @@ are bosonic Fock-states.
|
|||
Now \cref{eq:multihops} becomes
|
||||
\begin{equation}
|
||||
\label{eq:fockhops}
|
||||
∂_t\ket{Ψ} = \qty[-\iu H_\sys + \vb{L}\cdot\vb{η}^\ast -
|
||||
∑_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ +
|
||||
\iu ∑_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^†_{n,μ}L_n + b_{n,μ}L^†_n)] \ket{Ψ}.
|
||||
\begin{aligned}
|
||||
∂_t\ket{Ψ} &= \qty[-\iu H_\sys + \vb{L}\cdot\vb{η}^\ast -
|
||||
∑_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ +
|
||||
\iu ∑_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^†_{n,μ}L_n +
|
||||
b_{n,μ}L^†_n)] \ket{Ψ}\\
|
||||
&= \tilde{H}\ket{Ψ}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\section{Estimating the Norms of the Auxiliary States}
|
||||
\label{sec:normest}
|
||||
|
||||
It is possible to find an (semi-rigorous) upper bound to the norms of
|
||||
the auxiliary states. We will limit ourselves to one bath. The
|
||||
generalization to multiple baths is straight forward.
|
||||
|
||||
Using \cref{eq:fockhops}, we can calculate
|
||||
\begin{equation}
|
||||
\label{eq:normdiff}
|
||||
\begin{aligned}
|
||||
\iu ∂_t \norm{ψ^{\vb{k}}}^2
|
||||
&= \bra{Ψ}\ket{k}\bra{k}\tilde{H}\ket{Ψ} - \cc\\
|
||||
&= \qty(ψ^{\vb{k}})^†\bra{k}
|
||||
\qty[-\iu L η^\ast -\iu ∑_{μ=1}^{M}b_{μ}^\dag b_{μ} W_μ
|
||||
+∑_{μ=1}^{M} \sqrt{G_{μ}} \qty(b^†_{μ}L +
|
||||
b_μ L^†)]\ket{Ψ}- \cc\\
|
||||
&= \Bigg[-\iu \qty(ψ^{\vb{k}})^†L η^\ast ψ^{\vb{k}}
|
||||
-\iu ∑_{μ=1}^{M}k_μ W_μ \norm{ψ^{\vb{k}}}^2\\
|
||||
&\phantom{=}\quad -∑_{μ=1}^{M}\qty[\qty(ψ^{\vb{k}})^†\sqrt{G_{μ}k_μ}Lψ^{\vb{k}-\vb{e}_μ} +
|
||||
\qty(ψ^{\vb{k}})^†\sqrt{G_{μ}(k_μ+1)}Lψ^{\vb{k}+\vb{e}_μ} ]\Bigg] - \cc.
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
We can now further treat the this expression to find the steady state
|
||||
norms of the states.
|
||||
|
||||
Assuming generically that the term containing the stochastic process
|
||||
\(η\) vanishes in the time average (as is the case for the steady
|
||||
state) we will drop it in the following.
|
||||
|
||||
Terms of the form \(\Im(ψ^† O φ)\) may be estimated as follows
|
||||
\begin{equation}
|
||||
\label{eq:genericest}
|
||||
\abs{\Im(ψ^† O φ)} \leq \norm{ψ} \norm{O φ} \leq \norm{ψ}\norm{O}\norm{φ},
|
||||
\end{equation}
|
||||
where the norm on the operator is the standard linear operator norm
|
||||
\(\norm{O} = \max_{x\in \mathcal{H}}\frac{\ev{O}{x}}{\braket{x}}\).
|
||||
|
||||
We now endeavor to find from \cref{eq:normdiff} an estimate of the
|
||||
steady state norm of \(ψ^{\vb{k}}\). To this end we assume that the
|
||||
coupling to higher hierarchy states generically lowers the norm and is
|
||||
therefore neglected. Using \cref{eq:genericest} we can estimate the
|
||||
influence of the coupling to lower states, choosing the sign
|
||||
so that the contribution to the norm is positive.
|
||||
|
||||
With this we obtain
|
||||
\begin{equation}
|
||||
\label{eq:finalest}
|
||||
∂_t \norm{ψ^{\vb{k}}}^2 = 0 = -∑_{μ=1}^{M}k_μ \Re[W_μ]
|
||||
\norm{ψ^{\vb{k}}}^2 +
|
||||
∑_{μ=1}^{M}\abs{\sqrt{G_{μ}k_μ}}\norm{ψ^{\vb{k}}}\norm{ψ^{\vb{k}-\vb{e}_μ}}\norm{L}
|
||||
\end{equation}
|
||||
and therefore
|
||||
\begin{equation}
|
||||
\label{eq:steadynorm}
|
||||
\norm{ψ^{\vb{k}}} =
|
||||
\frac{∑_{μ=1}^{M}\abs{\sqrt{G_{μ}k_μ}}\norm{ψ^{\vb{k}-\vb{e}_μ}}\norm{L}}{∑_{μ=1}^{M}k_μ \Re[W_μ]}.
|
||||
\end{equation}
|
||||
|
||||
|
||||
For the nonlinear method, the stochastic process obtains a shift whose
|
||||
magnitude can be estimated as follows
|
||||
\begin{equation}
|
||||
\label{eq:shiftestimate}
|
||||
\abs{η_{\mathrm{sh}}} \leq \norm{L} ∫_0^∞\dd{s}\abs{α^\ast(t-s)} \leq
|
||||
\norm{L} \sum_{μ=1}^M \frac{\abs{G_μ}}{\Re[W_μ]}.
|
||||
\end{equation}
|
||||
|
||||
Assuming the contribution of the shift is norm enhancing, we arrive at
|
||||
the expression
|
||||
\begin{equation}
|
||||
\label{eq:steadynorm_nonlin}
|
||||
\norm{ψ^{\vb{k}}} =
|
||||
\frac{∑_{μ=1}^{M}\abs{\sqrt{G_{μ}k_μ}}\norm{ψ^{\vb{k}-\vb{e}_μ}}\norm{L}}{∑_{μ=1}^{M}k_μ
|
||||
\Re[W_μ] - \norm{L}^2 \sum_{μ=1}^M \frac{\abs{G_μ}}{\Re[W_μ]}}.
|
||||
\end{equation}
|
||||
|
||||
This indicates, that we trade hierarchy depth for sample count in the
|
||||
nonlinear method. The Markov limit may be related to
|
||||
\(\Re[W_μ]\rightarrow ∞\). In this case the extra term vanishes and
|
||||
the nonlinear method looses its advantage (as the shift vanishes).
|
||||
|
||||
The relations \cref{eq:steadynorm,eq:steadynorm_nonlin} are recursive
|
||||
and break off at \(ψ^0\), the norm of which can be assumed to be \(1\)
|
||||
in the nonlinear method.
|
||||
|
||||
|
||||
These ideas remain to be verified. Especially the assumptions should
|
||||
be checked. For time dependent coupling, one may maximize the estimate
|
||||
over all \(L(t)\).
|
||||
|
||||
\subsection{Truncation Scheme}
|
||||
\label{sec:truncsch}
|
||||
The norm of the \(\vb{k}\)th hierarchy state scales like
|
||||
\({1} / {\sqrt{\max_μk_μ}}\). This fact in itself, however, is not
|
||||
too meaningful as the magnitude of the coupling to the lower hierarchy
|
||||
states is
|
||||
\begin{equation}
|
||||
\label{eq:couplingmag}
|
||||
M_{\vb{k}} = \norm{L} \norm{ψ^{\vb{k}}} \max_μ \abs{\sqrt{G_μk_μ}},
|
||||
\end{equation}
|
||||
which balances out the scaling.
|
||||
|
||||
Calculating \(M_{\vb{k}}\) explicitly and demanding it to be small
|
||||
(compared to some energy scale) nevertheless gives a convergent
|
||||
truncation scheme below a certain coupling strength.
|
||||
|
||||
Some basic experimentation has shown, that the cutoff parameter has to
|
||||
be tuned and is not universally valid.
|
||||
|
|
Loading…
Add table
Reference in a new issue