norm estimate updates

This commit is contained in:
Valentin Boettcher 2022-04-01 18:26:59 +02:00
parent eb2cfce996
commit 0c1b268ebe
2 changed files with 118 additions and 3 deletions

Binary file not shown.

View file

@ -239,7 +239,122 @@ are bosonic Fock-states.
Now \cref{eq:multihops} becomes
\begin{equation}
\label{eq:fockhops}
_t\ket{Ψ} = \qty[-\iu H_\sys + \vb{L}\cdot\vb{η}^\ast -
_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ +
\iu_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^_{n,μ}L_n + b_{n,μ}L^_n)] \ket{Ψ}.
\begin{aligned}
_t\ket{Ψ} &= \qty[-\iu H_\sys + \vb{L}\cdot\vb{η}^\ast -
_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ +
\iu_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^_{n,μ}L_n +
b_{n,μ}L^_n)] \ket{Ψ}\\
&= \tilde{H}\ket{Ψ}
\end{aligned}
\end{equation}
\section{Estimating the Norms of the Auxiliary States}
\label{sec:normest}
It is possible to find an (semi-rigorous) upper bound to the norms of
the auxiliary states. We will limit ourselves to one bath. The
generalization to multiple baths is straight forward.
Using \cref{eq:fockhops}, we can calculate
\begin{equation}
\label{eq:normdiff}
\begin{aligned}
\iu_t \norm{ψ^{\vb{k}}}^2
&= \bra{Ψ}\ket{k}\bra{k}\tilde{H}\ket{Ψ} - \cc\\
&= \qty^{\vb{k}})^\bra{k}
\qty[-\iu L η^\ast -\iu_{μ=1}^{M}b_{μ}^\dag b_{μ} W_μ
+∑_{μ=1}^{M} \sqrt{G_{μ}} \qty(b^_{μ}L +
b_μ L^†)]\ket{Ψ}- \cc\\
&= \Bigg[-\iu \qty^{\vb{k}})^†L η^\ast ψ^{\vb{k}}
-\iu_{μ=1}^{M}k_μ W_μ \norm{ψ^{\vb{k}}}^2\\
&\phantom{=}\quad -∑_{μ=1}^{M}\qty[\qty^{\vb{k}})^\sqrt{G_{μ}k_μ}^{\vb{k}-\vb{e}_μ} +
\qty^{\vb{k}})^\sqrt{G_{μ}(k_μ+1)}^{\vb{k}+\vb{e}_μ} ]\Bigg] - \cc.
\end{aligned}
\end{equation}
We can now further treat the this expression to find the steady state
norms of the states.
Assuming generically that the term containing the stochastic process
\(η\) vanishes in the time average (as is the case for the steady
state) we will drop it in the following.
Terms of the form \(\Im(ψ^† O φ)\) may be estimated as follows
\begin{equation}
\label{eq:genericest}
\abs{\Im^† O φ)} \leq \norm{ψ} \norm{O φ} \leq \norm{ψ}\norm{O}\norm{φ},
\end{equation}
where the norm on the operator is the standard linear operator norm
\(\norm{O} = \max_{x\in \mathcal{H}}\frac{\ev{O}{x}}{\braket{x}}\).
We now endeavor to find from \cref{eq:normdiff} an estimate of the
steady state norm of \(ψ^{\vb{k}}\). To this end we assume that the
coupling to higher hierarchy states generically lowers the norm and is
therefore neglected. Using \cref{eq:genericest} we can estimate the
influence of the coupling to lower states, choosing the sign
so that the contribution to the norm is positive.
With this we obtain
\begin{equation}
\label{eq:finalest}
_t \norm{ψ^{\vb{k}}}^2 = 0 = -∑_{μ=1}^{M}k_μ \Re[W_μ]
\norm{ψ^{\vb{k}}}^2 +
_{μ=1}^{M}\abs{\sqrt{G_{μ}k_μ}}\norm{ψ^{\vb{k}}}\norm{ψ^{\vb{k}-\vb{e}_μ}}\norm{L}
\end{equation}
and therefore
\begin{equation}
\label{eq:steadynorm}
\norm{ψ^{\vb{k}}} =
\frac{_{μ=1}^{M}\abs{\sqrt{G_{μ}k_μ}}\norm{ψ^{\vb{k}-\vb{e}_μ}}\norm{L}}{_{μ=1}^{M}k_μ \Re[W_μ]}.
\end{equation}
For the nonlinear method, the stochastic process obtains a shift whose
magnitude can be estimated as follows
\begin{equation}
\label{eq:shiftestimate}
\abs{η_{\mathrm{sh}}} \leq \norm{L}_0^\dd{s}\abs{α^\ast(t-s)} \leq
\norm{L} \sum_{μ=1}^M \frac{\abs{G_μ}}{\Re[W_μ]}.
\end{equation}
Assuming the contribution of the shift is norm enhancing, we arrive at
the expression
\begin{equation}
\label{eq:steadynorm_nonlin}
\norm{ψ^{\vb{k}}} =
\frac{_{μ=1}^{M}\abs{\sqrt{G_{μ}k_μ}}\norm{ψ^{\vb{k}-\vb{e}_μ}}\norm{L}}{_{μ=1}^{M}k_μ
\Re[W_μ] - \norm{L}^2 \sum_{μ=1}^M \frac{\abs{G_μ}}{\Re[W_μ]}}.
\end{equation}
This indicates, that we trade hierarchy depth for sample count in the
nonlinear method. The Markov limit may be related to
\(\Re[W_μ]\rightarrow\). In this case the extra term vanishes and
the nonlinear method looses its advantage (as the shift vanishes).
The relations \cref{eq:steadynorm,eq:steadynorm_nonlin} are recursive
and break off at \(ψ^0\), the norm of which can be assumed to be \(1\)
in the nonlinear method.
These ideas remain to be verified. Especially the assumptions should
be checked. For time dependent coupling, one may maximize the estimate
over all \(L(t)\).
\subsection{Truncation Scheme}
\label{sec:truncsch}
The norm of the \(\vb{k}\)th hierarchy state scales like
\({1} / {\sqrt{\max_μk_μ}}\). This fact in itself, however, is not
too meaningful as the magnitude of the coupling to the lower hierarchy
states is
\begin{equation}
\label{eq:couplingmag}
M_{\vb{k}} = \norm{L} \norm{ψ^{\vb{k}}} \max_μ \abs{\sqrt{G_μk_μ}},
\end{equation}
which balances out the scaling.
Calculating \(M_{\vb{k}}\) explicitly and demanding it to be small
(compared to some energy scale) nevertheless gives a convergent
truncation scheme below a certain coupling strength.
Some basic experimentation has shown, that the cutoff parameter has to
be tuned and is not universally valid.