diff --git a/calca/hops/norm_estimate.xopp b/calca/hops/norm_estimate.xopp index e78614e..35ca0fc 100644 Binary files a/calca/hops/norm_estimate.xopp and b/calca/hops/norm_estimate.xopp differ diff --git a/tex/hops_tweaks/src/index.tex b/tex/hops_tweaks/src/index.tex index dd96335..3dd3c54 100644 --- a/tex/hops_tweaks/src/index.tex +++ b/tex/hops_tweaks/src/index.tex @@ -239,7 +239,122 @@ are bosonic Fock-states. Now \cref{eq:multihops} becomes \begin{equation} \label{eq:fockhops} - ∂_t\ket{Ψ} = \qty[-\iu H_\sys + \vb{L}\cdot\vb{η}^\ast - - ∑_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ + - \iu ∑_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^†_{n,μ}L_n + b_{n,μ}L^†_n)] \ket{Ψ}. + \begin{aligned} + ∂_t\ket{Ψ} &= \qty[-\iu H_\sys + \vb{L}\cdot\vb{η}^\ast - + ∑_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ + + \iu ∑_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^†_{n,μ}L_n + + b_{n,μ}L^†_n)] \ket{Ψ}\\ + &= \tilde{H}\ket{Ψ} + \end{aligned} \end{equation} + +\section{Estimating the Norms of the Auxiliary States} +\label{sec:normest} + +It is possible to find an (semi-rigorous) upper bound to the norms of +the auxiliary states. We will limit ourselves to one bath. The +generalization to multiple baths is straight forward. + +Using \cref{eq:fockhops}, we can calculate +\begin{equation} + \label{eq:normdiff} + \begin{aligned} + \iu ∂_t \norm{ψ^{\vb{k}}}^2 + &= \bra{Ψ}\ket{k}\bra{k}\tilde{H}\ket{Ψ} - \cc\\ + &= \qty(ψ^{\vb{k}})^†\bra{k} + \qty[-\iu L η^\ast -\iu ∑_{μ=1}^{M}b_{μ}^\dag b_{μ} W_μ + +∑_{μ=1}^{M} \sqrt{G_{μ}} \qty(b^†_{μ}L + + b_μ L^†)]\ket{Ψ}- \cc\\ + &= \Bigg[-\iu \qty(ψ^{\vb{k}})^†L η^\ast ψ^{\vb{k}} + -\iu ∑_{μ=1}^{M}k_μ W_μ \norm{ψ^{\vb{k}}}^2\\ + &\phantom{=}\quad -∑_{μ=1}^{M}\qty[\qty(ψ^{\vb{k}})^†\sqrt{G_{μ}k_μ}Lψ^{\vb{k}-\vb{e}_μ} + + \qty(ψ^{\vb{k}})^†\sqrt{G_{μ}(k_μ+1)}Lψ^{\vb{k}+\vb{e}_μ} ]\Bigg] - \cc. + \end{aligned} +\end{equation} + +We can now further treat the this expression to find the steady state +norms of the states. + +Assuming generically that the term containing the stochastic process +\(η\) vanishes in the time average (as is the case for the steady +state) we will drop it in the following. + +Terms of the form \(\Im(ψ^† O φ)\) may be estimated as follows +\begin{equation} + \label{eq:genericest} + \abs{\Im(ψ^† O φ)} \leq \norm{ψ} \norm{O φ} \leq \norm{ψ}\norm{O}\norm{φ}, +\end{equation} +where the norm on the operator is the standard linear operator norm +\(\norm{O} = \max_{x\in \mathcal{H}}\frac{\ev{O}{x}}{\braket{x}}\). + +We now endeavor to find from \cref{eq:normdiff} an estimate of the +steady state norm of \(ψ^{\vb{k}}\). To this end we assume that the +coupling to higher hierarchy states generically lowers the norm and is +therefore neglected. Using \cref{eq:genericest} we can estimate the +influence of the coupling to lower states, choosing the sign +so that the contribution to the norm is positive. + +With this we obtain +\begin{equation} + \label{eq:finalest} + ∂_t \norm{ψ^{\vb{k}}}^2 = 0 = -∑_{μ=1}^{M}k_μ \Re[W_μ] + \norm{ψ^{\vb{k}}}^2 + + ∑_{μ=1}^{M}\abs{\sqrt{G_{μ}k_μ}}\norm{ψ^{\vb{k}}}\norm{ψ^{\vb{k}-\vb{e}_μ}}\norm{L} +\end{equation} +and therefore +\begin{equation} + \label{eq:steadynorm} + \norm{ψ^{\vb{k}}} = + \frac{∑_{μ=1}^{M}\abs{\sqrt{G_{μ}k_μ}}\norm{ψ^{\vb{k}-\vb{e}_μ}}\norm{L}}{∑_{μ=1}^{M}k_μ \Re[W_μ]}. +\end{equation} + + +For the nonlinear method, the stochastic process obtains a shift whose +magnitude can be estimated as follows +\begin{equation} + \label{eq:shiftestimate} + \abs{η_{\mathrm{sh}}} \leq \norm{L} ∫_0^∞\dd{s}\abs{α^\ast(t-s)} \leq + \norm{L} \sum_{μ=1}^M \frac{\abs{G_μ}}{\Re[W_μ]}. +\end{equation} + +Assuming the contribution of the shift is norm enhancing, we arrive at +the expression +\begin{equation} + \label{eq:steadynorm_nonlin} + \norm{ψ^{\vb{k}}} = + \frac{∑_{μ=1}^{M}\abs{\sqrt{G_{μ}k_μ}}\norm{ψ^{\vb{k}-\vb{e}_μ}}\norm{L}}{∑_{μ=1}^{M}k_μ + \Re[W_μ] - \norm{L}^2 \sum_{μ=1}^M \frac{\abs{G_μ}}{\Re[W_μ]}}. +\end{equation} + +This indicates, that we trade hierarchy depth for sample count in the +nonlinear method. The Markov limit may be related to +\(\Re[W_μ]\rightarrow ∞\). In this case the extra term vanishes and +the nonlinear method looses its advantage (as the shift vanishes). + +The relations \cref{eq:steadynorm,eq:steadynorm_nonlin} are recursive +and break off at \(ψ^0\), the norm of which can be assumed to be \(1\) +in the nonlinear method. + + +These ideas remain to be verified. Especially the assumptions should +be checked. For time dependent coupling, one may maximize the estimate +over all \(L(t)\). + +\subsection{Truncation Scheme} +\label{sec:truncsch} +The norm of the \(\vb{k}\)th hierarchy state scales like +\({1} / {\sqrt{\max_μk_μ}}\). This fact in itself, however, is not +too meaningful as the magnitude of the coupling to the lower hierarchy +states is +\begin{equation} + \label{eq:couplingmag} + M_{\vb{k}} = \norm{L} \norm{ψ^{\vb{k}}} \max_μ \abs{\sqrt{G_μk_μ}}, +\end{equation} +which balances out the scaling. + +Calculating \(M_{\vb{k}}\) explicitly and demanding it to be small +(compared to some energy scale) nevertheless gives a convergent +truncation scheme below a certain coupling strength. + +Some basic experimentation has shown, that the cutoff parameter has to +be tuned and is not universally valid.