master-thesis-tex/poster/nmqsd_hops_theory.tex

78 lines
3.6 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\begin{block}{NMQSD/HOPS}
Consider the model of a general quantum system (\(H_\sys(t)\))
coupled to \(N\) baths
\begin{equation}
\label{eq:generalmodel}
H(t) = H_\sys(t) + ∑_{n=1}^N \qty[L_n^†(t)B_n + \hc] + ∑_{n=1}^NH_B\nth ,
\end{equation}
with \(B_n=_{λ} g_λ\nth a_λ\nth\) and
\(H_B\nth=_λω_λ\nth \qty(b_λ\nth)^\dag b_λ\nth\). Projecting
onto coherent bath states
\begin{equation}
\label{eq:projected}
\ket{ψ(t)} = ∫∏_{n=1}^N{\qty(\frac{\dd{\vb{z}\nth}}{π^{N_n}}\eu^{-\abs{\vb{z}}^2})}\ket{ψ(t,\underline{\vb{z}}^\ast)}\ket{\underline{\vb{z}}}
\end{equation}
leads to \emph{stochastic} Non-Markovian
Quantum State Diffusion (NMQSD)
\begin{equation}
\label{eq:nmqsd}
__t(\vb{η}^\ast_t) = -\iu H(t) ψ_t(\vb{η}^\ast_t) +
\vb{L}\cdot \vb{η}^\ast__t(\vb{η}^\ast_t) - ∑_{n=1}^N L(t)_n^†∫_0^t\dd{s}α_n(t-s)\fdv{ψ_t(\vb{η}^\ast_t)}{η^\ast_n(s)},
\end{equation}
where the
\(α_n(τ) = \ev{B_n(t) B_n(0)} =_λ\abs{g_λ}^2 \eu^{-\iu ω_λ t}\)
{\tiny (interaction picture)} are the bath correlation functions (BCF)
and the \(η_n=(\vb{η})_n\) are complex valued Gaussian processes
with \(\mathcal{M}(η_n(t))=\mathcal{M}(η_n(t)η_n(s))=0\) and
\(\mathcal{M}(η_n(t)η_n^\ast(s))=α_n(t-s)\). The reduced state of
the system is recovered through
\(ρ=\mathcal{M}(ψ_t(\vb{η}^\ast_t)ψ_t^\dag(\vb{η}^\ast_t))\).
With \(α_n(τ)=_{\mu}^{M_n}G_μ\nth\eu^{-W_μ\nth τ}\) we define
\begin{align}
\label{eq:dop}
D_μ\nth(t) &\equiv_0^t\dd{s}G_μ\nth\eu^{-W_μ\nth
(t-s)}\fdv{η^\ast_n(s)} &
D^{\underline{\vb{k}}} &\equiv
_{n=1}^N∏_{μ=1}^{M_n}
{\sqrt{\frac{\underline{\vb{k}}_{n,μ}!}{\qty(G\nth_μ)^{\underline{\vb{k}}_{n,μ}}}}
\frac{1}{\iu^{\underline{\vb{k}}_{n,μ}}}}\qty(D_μ\nth)^{\underline{\vb{k}}_{n,μ}}\\
ψ^{\underline{\vb{k}}} &\equiv D^{\underline{\vb{k}}}ψ \equiv \braket{\kmat}{Ψ}.
\end{align}
For the Fock-space embedded hierarchy state \(\ket{Ψ}\) we find
\begin{equation}
\label{eq:fockhops}
\begin{aligned}
_t\ket{Ψ} &= \qty[
\begin{aligned}
-\iu H_\sys + \vb{L}\cdot\vb{η}^\ast &-
_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ \\
&\qquad+
\iu_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^_{n,μ}L_n +
b_{n,μ}L^_n)
\end{aligned}
] \ket{Ψ}.
\end{aligned}
\end{equation}
Truncating the hierarchy depth \(\kmat\) in \cref{eq:fockhops}
yields the numeric method.
Finite temperature can be dealt with through substituting
\(B(t)\rightarrow B(t)+ξ(t)\) with
\begin{equation}
\label{eq:thermproc}
\begin{aligned}
\mathcal{M}(ξ(t))&=0=\mathcal{M}(ξ(t) ξ(s)) \\
\mathcal{M}\left(ξ(t) ξ^{*}(s)\right)&=\frac{1}{\pi}_{0}^{}
\dd{ω} \bar{n}(\beta ω) J(ω) e^{-{\iu} ω(t-s)} \\
J(ω)&\sum_λ\abs{g_λ}^2δ(w-ω_λ).
\end{aligned}
\end{equation}
See~\cite{Hartmann2017Dec} for details about finite temperatures
and the nonlinear method.
\end{block}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: ""
%%% End: