\begin{block}{NMQSD/HOPS} Consider the model of a general quantum system (\(H_\sys(t)\)) coupled to \(N\) baths \begin{equation} \label{eq:generalmodel} H(t) = H_\sys(t) + ∑_{n=1}^N \qty[L_n^†(t)B_n + \hc] + ∑_{n=1}^NH_B\nth , \end{equation} with \(B_n=∑_{λ} g_λ\nth a_λ\nth\) and \(H_B\nth=∑_λω_λ\nth \qty(b_λ\nth)^\dag b_λ\nth\). Projecting onto coherent bath states \begin{equation} \label{eq:projected} \ket{ψ(t)} = ∫∏_{n=1}^N{\qty(\frac{\dd{\vb{z}\nth}}{π^{N_n}}\eu^{-\abs{\vb{z}}^2})}\ket{ψ(t,\underline{\vb{z}}^\ast)}\ket{\underline{\vb{z}}} \end{equation} leads to \emph{stochastic} Non-Markovian Quantum State Diffusion (NMQSD) \begin{equation} \label{eq:nmqsd} ∂_tψ_t(\vb{η}^\ast_t) = -\iu H(t) ψ_t(\vb{η}^\ast_t) + \vb{L}\cdot \vb{η}^\ast_tψ_t(\vb{η}^\ast_t) - ∑_{n=1}^N L(t)_n^†∫_0^t\dd{s}α_n(t-s)\fdv{ψ_t(\vb{η}^\ast_t)}{η^\ast_n(s)}, \end{equation} where the \(α_n(τ) = \ev{B_n(t) B_n(0)} = ∑_λ\abs{g_λ}^2 \eu^{-\iu ω_λ t}\) {\tiny (interaction picture)} are the bath correlation functions (BCF) and the \(η_n=(\vb{η})_n\) are complex valued Gaussian processes with \(\mathcal{M}(η_n(t))=\mathcal{M}(η_n(t)η_n(s))=0\) and \(\mathcal{M}(η_n(t)η_n^\ast(s))=α_n(t-s)\). The reduced state of the system is recovered through \(ρ=\mathcal{M}(ψ_t(\vb{η}^\ast_t)ψ_t^\dag(\vb{η}^\ast_t))\). With \(α_n(τ)=∑_{\mu}^{M_n}G_μ\nth\eu^{-W_μ\nth τ}\) we define \begin{align} \label{eq:dop} D_μ\nth(t) &\equiv ∫_0^t\dd{s}G_μ\nth\eu^{-W_μ\nth (t-s)}\fdv{η^\ast_n(s)} & D^{\underline{\vb{k}}} &\equiv ∏_{n=1}^N∏_{μ=1}^{M_n} {\sqrt{\frac{\underline{\vb{k}}_{n,μ}!}{\qty(G\nth_μ)^{\underline{\vb{k}}_{n,μ}}}} \frac{1}{\iu^{\underline{\vb{k}}_{n,μ}}}}\qty(D_μ\nth)^{\underline{\vb{k}}_{n,μ}}\\ ψ^{\underline{\vb{k}}} &\equiv D^{\underline{\vb{k}}}ψ \equiv \braket{\kmat}{Ψ}. \end{align} For the Fock-space embedded hierarchy state \(\ket{Ψ}\) we find \begin{equation} \label{eq:fockhops} \begin{aligned} ∂_t\ket{Ψ} &= \qty[ \begin{aligned} -\iu H_\sys + \vb{L}\cdot\vb{η}^\ast &- ∑_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ \\ &\qquad+ \iu ∑_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^†_{n,μ}L_n + b_{n,μ}L^†_n) \end{aligned} ] \ket{Ψ}. \end{aligned} \end{equation} Truncating the hierarchy depth \(\kmat\) in \cref{eq:fockhops} yields the numeric method. Finite temperature can be dealt with through substituting \(B(t)\rightarrow B(t)+ξ(t)\) with \begin{equation} \label{eq:thermproc} \begin{aligned} \mathcal{M}(ξ(t))&=0=\mathcal{M}(ξ(t) ξ(s)) \\ \mathcal{M}\left(ξ(t) ξ^{*}(s)\right)&=\frac{1}{\pi} ∫_{0}^{∞} \dd{ω} \bar{n}(\beta ω) J(ω) e^{-{\iu} ω(t-s)} \\ J(ω)&=π\sum_λ\abs{g_λ}^2δ(w-ω_λ). \end{aligned} \end{equation} See~\cite{Hartmann2017Dec} for details about finite temperatures and the nonlinear method. \end{block} %%% Local Variables: %%% mode: latex %%% TeX-master: "" %%% End: