2019-12-14 11:43:02 +01:00
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 1,
|
2019-12-14 11:43:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"import numpy as np\n",
|
|
|
|
"import matplotlib.pyplot as plt\n",
|
2019-12-14 21:17:02 +01:00
|
|
|
"import pandas as pd\n",
|
2019-12-21 21:13:24 +01:00
|
|
|
"import util\n",
|
|
|
|
"from importlib import reload\n",
|
|
|
|
"reload(util)\n",
|
2019-12-15 17:36:13 +01:00
|
|
|
"from util import *\n",
|
2019-12-14 21:17:02 +01:00
|
|
|
"from scipy.stats import binned_statistic"
|
2019-12-14 11:43:02 +01:00
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"source": [
|
|
|
|
"# Kennlinien PM3"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 2,
|
2019-12-14 11:43:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"131.75230566534913"
|
|
|
|
]
|
|
|
|
},
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 2,
|
2019-12-14 11:43:02 +01:00
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"eta = .03\n",
|
|
|
|
"rt = 506/60\n",
|
|
|
|
"T = 1/eta**2*1/rt\n",
|
|
|
|
"T"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 3,
|
2019-12-14 11:43:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
2019-12-14 21:17:02 +01:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"0.029514066805047763"
|
|
|
|
]
|
|
|
|
},
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 3,
|
2019-12-14 21:17:02 +01:00
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
}
|
|
|
|
],
|
2019-12-14 11:43:02 +01:00
|
|
|
"source": [
|
|
|
|
"N=1148\n",
|
|
|
|
"c=N/T\n",
|
|
|
|
"dc=np.sqrt(N)/T\n",
|
|
|
|
"dc/c"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"source": [
|
|
|
|
"## Plot"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 4,
|
2019-12-14 11:43:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
2019-12-21 18:28:41 +01:00
|
|
|
"image/png": [
|
2019-12-21 21:13:24 +01:00
|
|
|
"iVBORw0KGgoAAAANSUhEUgAAAWAAAAEYCAYAAABiECzgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3hUxfrHP5Nk0wtJIFQJIC0BIl1Qr2Dv/SqWi2Lj8lOvV1TEhr0AV++1i9hQUdRrAxG9ooKCIpIIoYQWCBCapPdsNrvv748k6wYSsuVsdjeZz/Psk9lzZuZ93znMsOd75swoEUGj0Wg0rU+Qrx3QaDSa9ooegDUajcZH6AFYo9FofIQegDUajcZH6AFYo9FofIQegDUajcZHtPkBWCk1uS3a0vYC11Zbt9eWYzPcnoi06Q+QXv/3AodjTqddzJveCjYcjx3VnhdiPsKet+J099p5ELPT185bbenldtX9wAvXztNPm/8F7MAFbqZdLedtG03ZMqJeZ8o1ZS+Q29Jde95qS6NteNqW7vrjrr1A7AceoepH9DZLZGSkpKamUlhYSEJCAoBLaVfy7t+/n27dunnVhuOxluwZHXNT9rwVp6M9b9pw59p5qy292a7utKW7/jjTlgcPHsRkMpGYmBhw/SAjI6NcRGIwAqN+SvvrJyUlRURE8vLypAFX0q7kTU9P97oNx2Mt2TM65qbseStOR3vetOHOtfNWWxptw9O2dNcfZ9ry119/laysLLdt+LIfYKAEEWLIKO6HKKUuAC7o3r07+fn5lJSU2M+5knYlr9lsJj8/36s2HI+1ZM/omJuy5604He1504Y7185bbWm0DU/b0l1/nGnLjh07EhcX18inQOkHQJxSai7wpYh8iQe02QG4vmG+TE1Nvbljx45A3UVvwJW0s3l3797tdRuOf52xZ6Q/zdnzVpyO9rxloyHt6rXzVlsaaaM5e/7QD6qqqoiMjCQyMtLjmFu7HwAlImLITIj29BBOo9H4Cd988w0ff/yxr93wOW32IZyDBHHzunXrKCkpIS4uDoCioiJsNhsWiwWbzUZQUN3/Q02lWzrvmK6trSUkJMSpvO7acDzWkj1X6nWmXFP2vBWnoz1v2nDn2iml6NixI8HBwY3+XTWVbu78tm3b6N+/v8vl3M3bYM+Vet31p6XYADZt2kRkZCS9e/f2OGYj29KZcp06dcoGlmGABOHzh2Te/jT1EG7Lli2Sl5cnNptNampq7MebSrd03jFdXl7udF53bTgea8meK/U6U64pe96K09GeN224eu1sNpscPHhQdu7cKSL6IVx7fBiNngfsGRaLhcTERJRSvnZFE2AopYiPj6e6utrXrgQ0FRUVlJeX+9oNn9NmH8IdbRaEzWajtrYWAKvVaj/eVLql845pEcFisbhczt28LdlzpV5nyjVlz1txOtrzpg13rp3NZsNqtTo1q0DPgmg675IlSwgJCeGSSy7RsyDaInKUWRANk8AbaCntbN6amhqX6nXHhuNfZ+wZ6U9z9rwVp6M9b9loSLt67YKDg51+wq5nQRyZHj16NHFxcUfU3d5mQbTZAdjfOXDgALNnzyYhIYGamhqys7Pp1asXjz32WKv5UFZWxu23346IMG/evEbn3n//fW677TYOHToEwLx58zjjjDOIiopyuv4VK1bw+uuv06tXL0pLS9m2bRuLFi2yP+zStF+Sk5MbDW6BwoTXVhlaX5vtCS1JEI63m/PnzyctLY1BgwZhtVpZsGABaWlppKWlUV1dzfz58xk+fDgDBgygurqaTz75hOHDh5OamkplZSWffvopY8aMoWfPnhQVFREdHX3U21iz2cwFF1zAggUL6NWrF1arFavVysSJE1tVgggPD+eqq65i/vz5jW71rVYrV1xxBQ888ID92Ntvv82oUaNISkpy2sYdd9zB3LlzGTRoEMHBwdx2222YzWZEJKAliIbrpSUI9yWI/fv3U1ZWRkxMTEBJEPX/RrQE0RKuSBBKKYKDgwkODrZPMwoKCsJkMmGxWBqdb8jfcN5kMtnPK6Xsx6D529ivvvqK3r1706tXL/vx8PBwPvvsMywWCyaTiYceegiz2UxoaCgxMTFMnTqVJ554gnfeeYe33nqL448/nv79+5OTk0NGRgZTp07lxRdfJCMjgw0bNtC1a1dycnKYO3cuISEhbNq0iX//+98MGTKErKwsZsyYQZ8+fQgKCqKgoICHH36YVatWcfXVVzNp0qRGt9rLli1j9+7dvPLKKwwZMoQpU6bw2muvkZ2dTXx8POXl5cyePfuIOLt27cqLL77I9OnTSUlJ4aWXXsJkMrFo0SJuv/12rrrqKsLDw/ntt994/PHHGT58OK+99hpbtmyhc+fO7NixgzfeeIPS0lKuvfZagoODGTRoEGvWrLH7OX/+fO677z5uv/12du/eTVZWFl999RWVlZVMnjyZ4cOH88gjj/Dggw+yevVqli9fzjvvvMODDz7I1KlTyc7OZuvWrXz00UdER0fz+++/M2PGDEaPHk11dTULFizghRde4MILL2wUn5YgPJMgPv/8c0wmE5MmTfI45taUIOqvv2EShM+niXn709Q0tA0bNtjTvpiGNnv2bLntttvsx7dv3y5PP/20nH/++bJt2zb55ptv5IwzzrCfHzdunPz2229itVqlT58+UlZWJh988IEMGTJEFi5cKAUFBfLwww+LiMiiRYukurpaRERuvfVWWbx4sYiIHH/88fLzzz+LiMjSpUvl4osvtqdPOOEEERHZv3+/DB482G43OTm5kQ+bNm0SEZGsrCwZMGCAfRrfddddJ1988cURcRYUFMjdd98tvXr1kv79+8uzzz5rP3/yySfL0qVLRURk5cqVMnLkSBER+eyzz8RqtYqIyJQpU2Tx4sVSU1Mjy5YtkzFjxkhNTY0cOnSokZ/jxo2zxzllyhT55JNPRETkjTfesLfLtm3bZNy4cXbfxo0bJ998843U1NTILbfcIvPnzxcRkZEjR8rKlSvtbXPyyScfcR1ramqOWMegubSehtZ03t9//1127Njhtg1fTUO7Ys4vei0IZ3BFgmigtWZBJCcns2rVKvvxHj16cNdddzFnzhxKS0tZu3YtFRUVzJw5k6CgILp3786hQ4ewWq2cddZZfP7556xbt44ZM2awYMEC9u/fz4UXXojFYiE0NJTp06fTqVMnsrKyGDZsGBaLhQ0bNvD111+zbNkyKisriYyMtL+I0qdPHywWC/Hx8ZSVlTUbW0N869atIygoiKeeegqbzUZwcDCFhYVHlIuJieGpp57i8ccfZ926dVxxxRX06dOH8847DxHhmGOOwWKx0KtXLzZt2oTFYiE8PJy7776bxMREtmzZwsiRI7FardTW1tK3b1+sVisdOnRo5KeIcOyxx9qnFxYXF9tjs1qt9nSD/1arFRGhd+/eWK1WEhISKCsrw2KxsGnTJnr37o3FYuGYY45pduaHliCaTzsjQcTGxhIbGxtwa0EUlVcTHJ3QK2AlCKVUF+AJ4DgRGVV/LAGYCewE+gH3i8gfTZTdBeyq/7pPRK5pzo748SyIiy66iNmzZ5Obm0u/fv3s5xvetBo+fDi//fYb9957LyaTiR9++IHk5GRMJhMTJkzgkUce4fTTT+eMM87g7rvvJi4ujhtvvBGTycSVV15Jeno6xx57LKWlpQQHB2MymUhLS+Pyyy8nLS2N8vJyFi9ejMlkIigoyJ6nAcfvDemGB2dbtmwhLS2NiIgIHnjgAfvgbjKZjqjn3HPP5dtvvwVgzJgxDBkyBJvNZpdtcnNzGTBgADt37iQ1NRWTycTVV19NZmYmPXv2pLi42C79hISE2NOH+9YgAR2ejo2NpaKiApPJxL59++wSEdTJSKGhofY6G86lpqayc+dOunXrRm5ubqMyjtdRSxCeSRAlJSUEBwcTHx/vcczeliBsNmHjgXJeTt/LtrxKgqMSEmvLCgJ2FsRJwEJgqMOxp4DvROTj+l+uzwATmyg7T0Qe8b6L3iUsLIwvv/ySp59+msTERGpqasjJyeG6666jd+/eDBs2jN9++40HHniAsLA
|
2019-12-21 18:28:41 +01:00
|
|
|
],
|
2019-12-14 11:43:02 +01:00
|
|
|
"text/plain": [
|
2019-12-14 21:17:02 +01:00
|
|
|
"<Figure size 360x288 with 1 Axes>"
|
2019-12-14 11:43:02 +01:00
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
2019-12-14 21:17:02 +01:00
|
|
|
"output_type": "display_data"
|
2019-12-14 11:43:02 +01:00
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2019-12-14 21:17:02 +01:00
|
|
|
"%matplotlib inline\n",
|
2019-12-16 00:35:31 +01:00
|
|
|
"\n",
|
|
|
|
"T = 140\n",
|
2019-12-14 21:17:02 +01:00
|
|
|
"fig, ax = set_up_plot()\n",
|
2019-12-16 00:35:31 +01:00
|
|
|
"calib = pd.read_excel('../messungen/vorversuch_kennlinnien.xlsx',\n",
|
|
|
|
" sheet_name='Kennl')\n",
|
|
|
|
"ax.set_xlabel('Spannung $U_{3,HV}$ [V]')\n",
|
|
|
|
"ax.set_ylabel('Zaehlrate PM3 [$s^{-1}$]')\n",
|
|
|
|
"ax.errorbar(calib['U/V'], calib[\"N123\"]/T, yerr=np.sqrt(calib[\"N123\"])/T,\n",
|
|
|
|
" marker='.', label='Koinzidenzrate 123')\n",
|
2019-12-14 21:17:02 +01:00
|
|
|
"ax.axvline(2300, linestyle='dotted', color='gray', label='Gewaehlte Spannung')\n",
|
|
|
|
"ax.legend()\n",
|
|
|
|
"ax.set_xlim([calib['U/V'].min(), calib['U/V'].max()])\n",
|
2019-12-21 18:28:41 +01:00
|
|
|
"ax.set_ylim(0)\n",
|
2019-12-16 00:35:31 +01:00
|
|
|
"save_fig(fig, 'kennlinie_123', 'vorversuch')\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 5,
|
2019-12-16 00:35:31 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
2019-12-21 18:28:41 +01:00
|
|
|
"image/png": [
|
2019-12-21 21:13:24 +01:00
|
|
|
"iVBORw0KGgoAAAANSUhEUgAAAWAAAAEYCAYAAABiECzgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2deXwV1fm4nzcrECAQQtgJiwhBQGjABRfA5atlqdXaWlu1P5dSalu1WKsirVSstS6ttVUr2ta6Va20VZFaF6woizWgILLJlrCTPSGBrO/vj5kbLyGBzL03uUve5/O5n8ydO2eec5LL4T3vnDkjqophGIbR9sSFuwKGYRjtFeuADcMwwoR1wIZhGGHCOmDDMIwwYR2wYRhGmLAO2DAMI0zEZAcsIjPNZz7zmS/ifaoacy8gx/05w29fi7cDKGe+CPIF4M4JQZ3N1w59wb5iMgL2Y0aA217LmS+yfF7dTTnNZ76W+IJC3B49pujUqZOOHDmSoqIi0tLSADxtey23Z88e+vbta74I8Xl1+3zB1Nl87ce3atWqg6rahVAQqlA6kl5ZWVmqqpqfn68+vGx7LZeTk2O+CPJ5dft8wdTZfO3HRwhTEAkh6cUjBBGZAczo168fBQUFlJaWNnzmZdtruaqqKvNFkM+r2+cLps7maz8+IFVEFgCvqeprBEFMdcDuL+O1kSNHfjc9PR0A30+v216Ozc3NDaic+VrP58Xt7wu0zuZrPz6gVFVDMhMi1i/CGYZhRCwxFQFbCsJ8gbhbewhbV1dHQUEB+/btAyA+Pp5169YBUF9fz759+xp++u9ryXZLjjVfYD4Roa6ujvj4eEtBtARLQZgvEoew27dvJz09nYyMDESEiooKUlJSAKipqSExMbHhp/++lmy35FjzefepKgcOHKCyspLBgwc3/ruGLAURUx2wRcDmC8Td2hFwRUUFvXv3pra2FnBmHtXU1ABOdOz/07f97T99BMDT/+9LR+xvvN3UvsbbLfG1dLs9+bp27Up+fv5R30UsAm4ai4DNF4kRcH5+PgkJCQ3RVnV1dcM20LDtv09EAGd43dSxzZVrarslPi/b7ckXHx/f1N/VLsIZhmFEO20aAYvIUOBuYDXQHyhU1bv8Pp8L3KSq6X77bgG6At2BN1X11WOc31IQ5vPsbouLcF6HzGWHaig/XEPOjiLGD0pr8pjm9jXe/uijj7jzzjuprq5m/vz5ZGdnc+655zJu3DhuuOEGhg8fftxztMS3c+dObr75ZrKysvjFL37BkiVL+Pe//839999/zHLz5s0jOzubqVOntsj397//ndtvv53TTz+doUOH8vnnn3Peeedx9dVXM3/+fObPn8/DDz/MrFmzGsoVFBQwbNgwpk2bxrx586iurmbOnDmceeaZbN26lX79+jF37tyjfL6yvr/l6p1lxHdOGxStKYg04AVVfQVARNaLyOuqukpEJuN0sg2IyKnAFFWdKiKJwHoRWaqqJU2d3FIQ5ovUFIQvlfCL1z5j3a5i4uLiAaczFpGGnwBlh2rYsK8cgG//OYcRvbvQpUPiEcf4lzupXyp3zjgJaHpIPWHCBKZMmcLBgweZNGkSv/3tb5k9ezZXXHEFcOTFqObO4b/d3OdDhgzhoosuYvPmzSQmJnLBBRcwZcqU45a7++67EZFm69F437e+9S0ef/xxrrjiCqZPn05hYSEDBgzg8ssv52c/+xmLFy/mgQceYObMmSQnJwOwYMECMjMzufzyy8nKyuLjjz/muuuu4+KLL6a+vp709HRmzpxJRkZGsymI3INxzHxxA/EpaT1qywujLwWhqh/5Ol8/f4WI9AK+Cfy+UZHpwAq3bA2wATi7LepqGOGi/HBNw3a9Qtnh2pCct6qqip/85CecffbZXHbZZQ37P/vsM6666iruv/9+Zs6cybZt2yguLmb69OlMmzaN22+/nfPPP58nnngCgL/85S/07t2b+++/n+9973ucffbZlJWVHeWbPXs2559/PgAPPvggnTt35o9//CPXXnst06ZNo66ujry8PC6++GLmzZsHwO7du7nqqqsaOtDVq1cft12FhYV07NixobMdNWoUEyZM4MknnwTgwIEDiAg9e/ZsKDNu3DimT58OwN69e+nSpQvdu3c/+uR+vLJmj7Mhx61SiwnbYjwicjEwGfgx8ATwEyAV5z7rdPeYx4ENqvqQ+/5Z4L+q+mQT55sJzATIyMjIXrx4MVVVVQ1/FC/bXsv5FuowX2T4vLr9F1oJtM7HKpeQkMDQoUMbolff3FJoOgL+eGcJV/71E1ShQ0Icf7ryZMb2T202Am68r/F2XV0d9957L4899hhjx47l5ZdfJjk5ueHzKVOm8Ktf/YrTTjuNpUuX8uijj/LCCy+wdOlS5s2bx5IlSzhw4ADTp0/nww8/RES48MILufnmmzn//PP58Y9/zKRJk/jqV7/Ks88+y44dO5g7dy65ubl873vf44033nAi9ZNO4l//+hfDhg3j0ksvZe7cuYwdO5bnnnuO3Nxc5syZw9VXX83UqVP5+te/Tl5eHpdffjnLly8/qk0XXnghffr0YciQIRQWFnLFFVcwfvx4VJVZs2Zx4403cskll/DJJ5/wwAMPMGvWLK644gpuuOGGhlSHqrJgwQJefPFFZs+ezfTp04/6HW7dupXa2lqqqqr4/apKVuyuYu9TN1K9f+sqvmCBqi4gAMIyC0JEpgBTgJuALwE1wPdwUhAdReQ2YCFwAPBfdairu+8o3F/AAoCRI0dqdnY2BQUFDcMHL9tey61atQrzRY7Pq9vnC6bOxyq3YcMGkpOTWzxv9dShSWT17kLZ4Vp+c+loThna84hjmyt3rHmySUlJXHPNNZSXl/ONb3yDhQsX0q1bN8CJgN9//30++ugjDh48SLdu3UhJSSExMZERI0aQkpJC//79qaioaGhHfHw8I0eOJCUlhb59+3L48GFSUlIaOvaUlBQ6depEXFwcKSkp1NTUICKMHTuW2trahml5ycnJJCcnk5SURHJyMuvXr6dv377s2bOHuLg4evXqRceOHYmLizuiTXFxcVx11VVMnz79qN9nQkICY8eO5YwzzuCBBx4gKSmJzMzMhjSQ/7GzZ8/m+uuvZ+zYsYwcOZIRI0Yc8TtMSkri5JNPZs++A2x4+xMmDu3BSxUlu1V1PCGgzTtgEZkGnAXcCPQBElV1lvvZIOBaVb3Xfb8IuNPdTgBGAkuPcW67CGc+z+5IvAjXOTmBzskJjOnX5ahjj1WuqW1Vpa6uDlXl4Ycf5rbbbmPatGm8+uqrdO3aldGjRzNjxgzGjBlDZWUlr732GjU1NdTX1zfUtbHPt5qX77P6+vojjqupqaGmpuao8rW1tQ3H+7b9X6NHj2bSpElMnTqVuLg4MjIyjvjcv021tbVHOHz1q6+vp66ujjlz5jBlyhTWrl3bcJyvngsXLmTs2LEMHTqU+Ph4evbsydatWxk2bNgRv0PfRbg31+2hpLKGy05O528HCw9F5UU4EckGXgRygHeBFOARYIWInADMwomA5wK/VdUPReRdEbkHJzqe3dwFOLCLcOaL/Itw0PbzgFeuXMmyZcuorq5m5cqVPPTQQ9xxxx1ccMEF3HLLLSxYsICHH36YwYMHk5uby1VXXUV9fT1/+9vfWLduHWvWrGHNmjWUlpbyyiuvkJaWRl5eHk8//TTXXnsty5YtY926dVx44YUsXryYgoICPv/8c5566il27tzJ22+/TUlJCaWlpTzzzDOMGjWKdevW8be//Y0hQ4awePFiiouL2bRpE7/5zW/4+c9/zrp168jPz+ess846qk0LFy5k586dLFy4kP79+5OVldVwzEMPPcS6det47733uOCCCygsLKSmpoZXX32VvLw8Fi5cyIQJE+jcuTN33nkn48aNY//+/YwZM4YZM2ZQX1/f5EW4Jds3kdElmWnZQyCE84DDvnZva7xsPeD27fPqbu31ZNevX6/V1dUN+w8ePNiw7dvv/7mX7ZYca77AfevXr9cDZYd1yG2L9J7F61XV1gNuFktBmC8QdySmIFq63Z5uDQ6Hr66ujue
|
2019-12-21 18:28:41 +01:00
|
|
|
],
|
2019-12-16 00:35:31 +01:00
|
|
|
"text/plain": [
|
|
|
|
"<Figure size 360x288 with 1 Axes>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"fig, ax = set_up_plot()\n",
|
|
|
|
"calib = pd.read_excel('../messungen/vorversuch_kennlinnien.xlsx',\n",
|
|
|
|
" sheet_name='Kennl')\n",
|
|
|
|
"ax.set_xlabel('Spannung $U_{3,HV}$ [V]')\n",
|
|
|
|
"ax.set_ylabel('Zaehlrate PM3 [$s^{-1}$]')\n",
|
|
|
|
"ax.errorbar(calib['U/V'], calib[\"N3\"]/T, yerr=np.sqrt(calib[\"N3\"])/T,\n",
|
|
|
|
" marker='.', label='Kennlinie PM3')\n",
|
|
|
|
"ax.legend()\n",
|
|
|
|
"ax.set_xlim([calib['U/V'].min(), calib['U/V'].max()])\n",
|
2019-12-21 18:28:41 +01:00
|
|
|
"ax.set_ylim(0)\n",
|
2019-12-14 21:17:02 +01:00
|
|
|
"save_fig(fig, 'kennlinie_pm3', 'vorversuch')"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"source": [
|
|
|
|
"# Peakhoehen der Photomultiplier"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 5,
|
2019-12-16 23:04:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": []
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 6,
|
2019-12-14 21:17:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"peaks = pd.read_excel('../messungen/vorversuch_kennlinnien.xlsx')\n",
|
|
|
|
"peak_labels = ['P1', 'P2', 'P3']\n",
|
2019-12-16 23:04:02 +01:00
|
|
|
"bin_offsets = [8, 15, 40]\n",
|
|
|
|
"scale_factors = [100, 10, 1]"
|
2019-12-14 21:17:02 +01:00
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 7,
|
2019-12-14 21:17:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
2019-12-16 23:04:02 +01:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
2019-12-21 18:28:41 +01:00
|
|
|
"P1 & 0.20 & 3.00 & 0.72 & 0.60 & 1.31 \\\\\n",
|
|
|
|
"P2 & 0.20 & 11.40 & 4.44 & 3.60 & 1.89 \\\\\n",
|
|
|
|
"P3 & 3.60 & 51.20 & 9.30 & 7.00 & 1.06 \\\\\n"
|
2019-12-16 23:04:02 +01:00
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
2019-12-14 21:17:02 +01:00
|
|
|
"source": [
|
2019-12-16 23:04:02 +01:00
|
|
|
"for peak in peak_labels: # nice and dirty :{}\n",
|
|
|
|
" cur = peaks[peak]\n",
|
2019-12-21 18:28:41 +01:00
|
|
|
" print(f\"{peak} & {cur.min():.2f} & {cur.max():.2f} & {cur.mean():.2f} & {cur.median():.2f} & {cur.mean()/cur.std():.2f} \\\\\\\\\")\n",
|
2019-12-14 21:17:02 +01:00
|
|
|
"peaks['dP1'] = calculate_peak_uncertainty(peaks[\"P1\"])\n",
|
|
|
|
"peaks['dP2'] = calculate_peak_uncertainty(peaks[\"P2\"])\n",
|
|
|
|
"peaks['dP3'] = calculate_peak_uncertainty(peaks[\"P3\"])\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 8,
|
2019-12-14 21:17:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
2019-12-15 17:36:13 +01:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"image/png": [
|
2019-12-21 21:13:24 +01:00
|
|
|
"iVBORw0KGgoAAAANSUhEUgAAAWAAAAEYCAYAAABiECzgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXxU1d3Gv7+ZTFaSkEUgbIIJi6xq8qqALFZFBaRaW6m+VFEURX0RUVHcqlVaRGzVVqviUotWW+uKuCGKCgICskVkCxD2JQSyQjKZ+b1/zMJkmMxMkklmJtzn8+GTc+5zlufeE07Ofe5ZRFUxYMCAAQPND1O4BRgwYMDAyQqjAzZgwICBMMHogA0YMGAgTDA6YAMGDBgIE4wO2IABAwbCBKMDNmDAgIEwweiAfUBEJoRbgwuRoiVSdIChxRciRQcYWuqDk6YDFpHL6op7c8CEujh/+ZqCq0tLc+vy1NHcWqKxfRpaZjS2T0O1RGP71Od+gsFJ0wED3g/nMj9cQ/M1BRfOuiNFSzS2T0PLjMb2aaiWaGwff1y9O2Bp6SvhMjMztUuXLhQXF5Oenu6+7hn35vbs2UP79u19cv7yNQVXl5bm1uWpo7m1RGP7hOpeo6F9GqolGtsn2PtZuXJlkaqeQiCoaov+l5ubq6qqBw8eVE94xr25FStW1Mn5y9cUXF1amluXp47m1hKN7dPQMqOxfRqqJRrbxx/nGQZWaBD9U0zAHjpK4fRjLuvatStFRUWUlJTU4j3j3lxVVRVFRUU+OX/5moKrS0tz6/LU0dxaorF9GlpmNLZPQ7VEY/v447zSpYrIS8BcVZ1LHWixHbDzpufm5eXdlJmZCYDrpwuecc9wYWFhnZy/fE3B+dPSnLq8dTS3lmhsn4aWGY3t01At0dg+/jiPcImqBpyBcTJ9hDNgwICBiEKL/QjnYUHc9MMPP1BSUkJqaqqb94x7c5s2baJ79+4+OX/5moKrS4u/Mg4fPozdbsdqtQJgt9sxmUwnhOvD1dTUEBMTU+98oeC803lqaeq6m1tLNLZPQ7VEY/t4x0WEzMxMzGZzrf+Dp5xyyhbgawJYEGH/SNbU/07Gj3AbNmzQgwcPqt1uV1XV6upqN+cZrg9XXl7eoHyh4LzTeWpp6rqbW0s0tk9DtURj+3jG7Xa77tu3T7du3aqqDfsIZ1gQLRBWq5WMjAxEJNxSDBhosRAR0tLSOHbsWIPLaLEf4U7mWRB2u52amhp33Gaz+QzXh1NVt6URqjKD5bzTeWpp6rqbW0s0tk9DtURj+3jH7XY7NpvNVx9jzILgJJ0FsW/fPiwWSy3OM94Qrrq6OuRl1ofzDHtrCaeuptASje3TUC3R2D7ecbPZjI8+xpgFYcCAAQORjBY7Ag63BXHnnCXsqTzuwbZPVHfcM1wX9++bz/WrJZAFEerXUcOCaB4t0dg+DdUSje3jizMsCB8ItwWxp1IoKKv9Ecwz7ou7wvQdU6wfcEvV7WRmjgqoxbAgmqfu5tYS7vax2WwMGTKEY8eOYbPZ+PWvf82jjz4KwPPPP8/s2bOx2+1MmDCByZMn+9SyYMEC7rjjDmw2G9dffz0PPPBAyO41WO6GG25g7ty5tG3blvz8fMDxf+Paa69l3759iAg333wzd9xxxwll7Ny5k/Hjx/tM553WsCBaAIaa1vCk5UU6sI/XY5+Aoi3hltQo/PDDDwwbNowhQ4awdOnSkJW7aNEiBg0axMKFC0NWZn3x9NNPB5Xu3HPPxWaz8eabb9KmTZsmVhU6xMXF8dVXX7Fy5UpWr17NZ599xtKlS8nPz2f27Nn88MMPrFy5ko8//pjNmzefkN9ms3Hbbbfx6aefsn79ev7973+zfv36Zr+PcePG8cEHH9S6FhMTw1NPPcXPP//MokWLeO6553xqCzZdY9FiR8DhtiDaJ9Ze4OIZ9+YGxm3lfuvTbKMT/2x1I1PKn8T2+mhKrvxPoy0I0xcPYN63DrtzwG1W3GHvuD8u3q7YTY6Itu2L7YI/uNP5ekU788wzGTx4MGVlZeTm5vp8DWzIa/k555xD7969qampwWq1hsWCePrpp7ntttsA/6+4ixYtwm63c9VVV3H//fc36Wu5qjJ06FCee+45evTowYEDBxg+fDirV69uUJlxcXHYbDaqqqqorq7GZrOxfv16zj77bCwWCzabjfPOO4///ve/3H333bXKWb58OdnZ2XTq1AmA3/zmN7z33nt069YtYN1PPvkkW7duZf/+/eTn53PLLbcwZcqUBj2jAQMGsGnTJncb2Ww2MjMzyczMxGq1kpiYSI8ePSgsLOS0006rVWabNm3Iyso6IZ2vezAsCB+IFgvCjI23rX/mkCZzTdVUUiytWVU1lY9jnyD9m2nE9XmkcRaEyYRdwCTOVT3Y3WHvuD/OJrbjnMmE3WwO+EpoNpsxmUy1uPLycsaOHcuQIUP4+eefGTt2LBdeeCGvvfYa06ZN484772Tr1q2sX7+eefPmkZKSAsBdd92F1WrltNNOY8+ePcTExFBVVcVVV13F0KFD2bhxI9dccw1Dhw7l3Xff5ZZbbuHgwYOsWrWKCRMmMGvWLF544QU2b97MnDlzUFVuvPFGHnjgAS6//HIeeeQRVBWz2UxiYiLTpk1za5owYQJ79+5lzZo1TJ48mSNHjjB9+nR69uzJZZddxmOPPeae9te6dWumTp3KRx99xKRJk1i4cCFdunRBRLBYLLz99ts+te3cuZNp06YxadIkCgsL+fnnn/n4449JSEjAYrEwadIkqqqq6NSpE59++indunXjqaeeIiMjA3C89hcUFNCrVy9MJhPr16+nX79+7mfv+jl48GBKS0vdc8RVFRFh1qxZXHjhhe60NpuNvLw8CgoKuO222xg0aBDJyck8+uijlJaWEhMTw+eff05eXt4Jdezdu5fOnTu74x07dmTlypUnpPP1e7N+/XrMZjPvvPMOO3fu5Morr+Tee++tlfb888+nvLzcncfzHoYOHVqrTBFxP3vv+rZv386aNWsYNGgQZq/fZ8+0nul8ldMYC6LFdsDRgn6ylVM4zG3WSRwkjRSUfD0NzpsMXz1GbNc9QG7DK7h0BjarFZPzF8Yz7B33xx2rqCApKel4uR6jufrAZDJx5513cuGFF7J//35GjRrFhRdeyPXXX88//vEPzjjjDO69914mTpzI/PnzufLKK/nkk0/YvHkzn376KQDvv/++u6xJkyZxySWXUFxczMUXX8z333/Pb3/7W+677z4Azj77bM444wxiYmJ44YUXyMvLo3v37lRVVTF06FAuv/xyPv/8c3744Qfmz58PwNChQ7n00ku5/vrref3118nLy2P06NGsWLGC/v37c//99/PII48A8OGHH7J06VK++OILrFYrF110EcOHD2f06NE89dRTJ9y/L22Auy5X+bfddhvz589n9OjRzJs3j82bN/PRRx9hsVj47LPPGDdunPuPE8COHTvo0KGDe4nsunXr6Nev3wn1f/fdd1itVncH4hn2hNlsZsWKFVRUVHDFFVeQn5/P6aefzr333stFF11EUlIS/fv3r7Xk2AX1sb1BsIuC1q5dy/vvv4/ZbMZsNtfah9eFr7/+upZm7/sJBuXl5YwZM4ann36alJSUOvN5pws1WmwHHC0WxCjbT2CHvYmnky3q5oo7DSeNx0kt/IyiogH1qjtSZkHYbLYTtNTU1LBgwQIWLVqE2Wzm4MGDbl5V6dq1q3sl35EjR7BareTn55Odne1O16VLF2pqaqiurmbhwoUsXboUi8XCwYMHfepyLUxp1aoVF198MW+++SZHjx7lqquuwmq1smrVKioqKpg+fToAHTp0YO/evfTu3RtVpXv37litVvr37+8u06Vl3bp17rx2u/2EvFarFavVWufzs9vt7mekqu77TE9P58iRI9hsNtauXUt2drY7j+v+Pe91zZo19OnTx13HypUr3ffnme7888+nrKwMbzzxxBNccMEFJzy/pKQkBg8ezLx588jJyeHaa6/l2muvxWaz8fvf/56OHTueUEf79u3ZsWOHW8uuXbto27btCem8f2+
|
2019-12-15 17:36:13 +01:00
|
|
|
],
|
|
|
|
"text/plain": [
|
|
|
|
"<Figure size 360x288 with 1 Axes>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"image/png": [
|
2019-12-21 21:13:24 +01:00
|
|
|
"iVBORw0KGgoAAAANSUhEUgAAAWAAAAEYCAYAAABiECzgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXxU1fn/389MNrKThLCpLAFkd0lUlAIq4Ia01P7UWrG2VVFELIgiVutSRdFCoVo3XFrU2sWvBcQFRRRFBAUEBEGQsEhAISFkD5NZnt8fd2aYLJOZhElyQ+7n9eLFufc555ln7n1y5nM/59xzRFWxYMGCBQvND1tLB2DBggULbRVWB2zBggULLQSrA7ZgwYKFFoLVAVuwYMFCC8HqgC1YsGChhWB1wBYsWLDQQrA64DogIhNaOgaw4qgLZonFiqM6zBIHmCuWUGhTHbCIjA1V9mJCMFt97cL1H64tMI6m8B/pOJo6xpqxNIX/1pwjzX0NrBwJGUdItKkOGBgbRrm+NqHahes/XFt9sUTCf6TjaKz/htgi4SMS8QdrEyn/jbk3zX0NrBwJP446ISf6m3AZGRnavXt3AAoLC0lLS6u3DHDgwAG6dOlSp62+duH6D9cWGEdT+I90HE0dY81YmsJ/a86R5r4GVo4EL69fv75AVTsQCqp6Qv/Lzs5WH/Lz80OWVVXXrVsX1FZfu3D9h2sLjKMp/Ec6jqaOsWYsTeG/NedIc18DK0eCl4F1Gkb/FBWyh26l8OoxY3v06EFBQQEAxcXFfnuwMoDD4aizTah24foP1xYYR1P4j3QcTR1jzViawn9rzpHmvgZWjtRbL0VE5gNLVHUJQXDCdsDeL70kJyfnpoyMDP/5cMp79+4NaquvXbj+w7XVjCPS/psijqaOsb57Ewn/4cZv1hxpzmtQXxyR9t8Qm0lypFhVQ87GaLIOWERGAVcAhwBV1Ydq2OOA2cB+oDcwS1V3iEgm8HfgMyATiAEmq6pHRJKBKUAJkA2sVtVngny+xYAjFKPFblpHjlgMuHYsbZIBi0g88BwwQFUdIvKmiIxU1eUB1aYA36vqEyIyCHgJGOaNaZGqvuD1tQk4F1iF0WE/pqq7RSQG6BksBosB17Y5nU4OHz5Mfn4+AG63m6qqqlrlmscJCQn+Ng1p15h6oWyBsTSF/3DjDxZHc1+fSMfR2Bjbao7YbDZSUlKIjo4GzMOAzwX2qqrDe7wKGAMEdsBjgD8AqOpmETlNRJJV9QDg63wTgURgr4gIMBr4wsuEE4G5TRT/CYm8vDxSU1PJzMxERHA6nf7ECSzXPC4vLychIaFOW33tGlMvlC0wlqbwH278weJo7usT6TgaG2NbzBFV5dChQ+Tl5dGjRw8agyaZhiYi1wBXq+o47/GNwPmqOj6gznZvnY3e4zxvnZ3e418CE4HXVfV5EekI/AiMUNVPvT5/oqq/qePzJ+CdjN25c+fsJUuMJwCHw0FsbGy9Zag+naSmrb524foP11Zz+svx+rfb7WRlZWGzGdO/VRXjd616ueax2+3GbrfXaauvXWPqhbIFxtIU/sONP1gczX19Ih1HY2Nsqzni8XjIzc3F7XZX+1vLycnZCxzTZGC+qs6nJsKZKtHQf8BIYHnA8R3AX2rUWQkMCzguAZJr1LEBK4DLgHaAArFeW19gT6hYrGlox8pbt27Vqqoq/3Gwcs3jsrKyoLb62jWmXihbYCxN4T/c+IPFESn/jbk3zX0NrBwxylu3blVVc01DWw10E5FYNWSIocAzIpIGuFS1BHgHQ6pY6dWAN6lqiYiMACpV9Us1Bt72Aj1V9V0RWY2h+24DugE7ggVgDcLVLrvdbtxud7Xjuso1j1UVp9PZ4HaNqRfKFhhLU/gPN/5gcUTKf2PuTXNfAytHjv1NFRQUmGcQTlUrRGQi8KSI5ANfq+pyEXkCKARmAX8FZovIfUAv4AZv86PAXSKyAUgCBGNWBMCNwDQRyQX6A5PqicEahKtRzs/Px263V9OzgpUDj6uqqoLa6mvX2Hr12WrGEmn/4cZfXxyR8B+urSniaEyMbTlH7Ha7/2/MLINwqOoyYFmNc9MDypXU0YGq6hfAlUF8bsXohC00Eb7OKwIg1g4O7w99eizkHiny1/HZBp+U2hIhWrBwwuCEfRHDkiBql8ORIGK94yjRAcs02eTY+UCb0+k84R8vGxpHpPybUYIoLy9n9OjROBwOXC4XP//5z3nwwQcB+OCDD7j77rvxeDz89re/Zdq0aXX66N27N4mJidjtdqKioli1alVEY4TQOVIzhjVr1tTp3+12M2TIELp06cLixYuDfvbxSBBNMghnpn/WIFzDBuE27Tuim/Yd0W8PHPGX8w4dKwfaavoI5jOw/MUXX+iIESN0yJAhunr16gb5UA0+wPLxxx/rGWecoR9//HFIH001CDd37tyw/GdnZ6vL5dJ//OMfmpqaelwxNucgnMPh0NLSUv/5s846S1evXq0ul0t79Oihubm56nA4dPDgwbpx48Y6fXTr1k0PHDjQZDGqhh6E69atm+bn54f0P2fOHL3mmmv0sssuq/ezzTgI1+KwGHDtciADtn1wL/YfN+Pxzq6xK3gEejk9AIiAemco2gXaB8xW9Nk80TZ/OwDtOAj3yD9V+7ya5TPOOINhw4ZRWlpKdnZ2g1g0BGc3Q4YMYeDAgbhcrlo+m4sBz5s3j0mTJoX0//nnn+PxeLj66qt54IEHGnwNGsqAR40axVNPPUW/fv04fPgwI0eOZP369Q2+Bh6Ph9jYWJxOJxUVFf64P//8c3r27MnJJ58MwJVXXslbb71F//79g/pv6FPM448/zp49ezh06BCbN29mwoQJ3HnnnXW2C3ZNAsuhcmTv3r28/fbbzJgxg3nz5tU7wGi6QTgzQK1BuFrlaoNwNhseAZsYeoIHDzax4VGjA7YBnoAO2BPQAftsNrH52xkGG54wBvnsdjs2m62azeFwcPXVVzN8+HC2bdvG+PHjGTVqFAsWLOC+++5j6tSp7Nq1iy1btvDee++RnJwMwLRp03A6nXTr1o0DBw4QFRWFw+HgqquuYsSIEWzfvp2rrrqKSy65hH//+9/ccsst5Ofns2HDBiZMmMCsWbN4+eWX2b59O6+++iqqyo033si9997LmDFjePjhh3G5XACkpqYyffp0/v73vzNjxgxuvfVW8vLy2LhxI3fddRdFRUXMnDmTXr16MX78eO6//34cDgcxMTEkJSUxffp0lixZwh133MGKFSvo2rWr/7r85z//4bbbbqOoqIgvv/ySm266ib/+9a/s3r2be+65x//9t23bxsKFC0lPTwfg9ttvB6Br1668++679OnThyeffNJ/faKjo8nNzeXUU08lOjqabdu2MXjw4FqDsRdeeCGlpaVA9Xmus2bN4pJLLjl27202srOz2blzJ7fccgtDhw7l//7v/zjppJP8/rp168bq1avrvPciwtixY7HZbNx888389re/DWuwa+vWrURHR7Nw4UJ27drFFVdcwT333FOtnu+H3ePxVJvrPmfOHEaNGuWvJyKMGTMGgFtuuYUJEybU+uzp06fz5z//mdLSUkSkyQbhWlwiaOp/lgRhLglCVfWBBx7QqVOnVrOVl5frsmXLVFX1xx9/1JycHL9txIgRunTpUlVVvemmm/T//u//VFV10aJFeskll/jrDR06VD/++GMtLy/X9957T1VVDx8+rIE50K1bN38s119/vS5btkyLioq0W7duWllZqUVFRTpt2jRVVX377bd19OjR1eLYsGGDqqr+5Cc/0XfeeUdV1S+ldOvWzV936dKlOnr0aP9n+dr6/OzevVurqqqqtfGVVVWvu+46v5wyfPhw//e/9dZb9d///net+FRVzzvvPH8bn889e/bo2Wef7Y9j3rx5+uijjx63DHPkyBEdMWKEbt68Wf/73//q9ddf77e98soreuutt9bZbv/+/VpVVaUHDx7UwYMH6/Lly8OKY+DAgbpz505VVc3NzdXhw4cHbRdKgti/f7+qqubl5engwYP1k08+qVZvyZIlevPNN6uqIW1ZEkQ
|
2019-12-15 17:36:13 +01:00
|
|
|
],
|
|
|
|
"text/plain": [
|
|
|
|
"<Figure size 360x288 with 1 Axes>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"image/png": [
|
2019-12-21 21:13:24 +01:00
|
|
|
"iVBORw0KGgoAAAANSUhEUgAAAWAAAAEYCAYAAABiECzgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXiVxfXHPyfJzUYSIIQdCfsmQoFYQX9uoFJxqUsrraXWiiIKomKFWuqOShU3WixSl1qs1Ra3ihuIolZBFtkUZQn7akIgKyQ3N+f3x/vmcpPc5L4hN3lvyHyfJ0/OO/fMnPkmMDnznXlnRFUxMDAwMGh4RLndAQMDA4OmCjMAGxgYGLgEMwAbGBgYuAQzABsYGBi4BDMAGxgYGLgEMwAbGBgYuAQzAAeBiIxrSnHdjG04N43YTZGzEzSJAVhELqmNDYyrjX+47NrGdTO24Ww412dcN2OHMW5INIkBGLiklnZd6tbFrm1cN2Mbzg0X183YhnN44gaFnOhvwqWlpWlKSgqpqakA5OTkhLT37t1Lhw4dHPuHy65tXDdjG86Gs+Fcvb1q1apsVW1NKKjqCf01ZMgQzcrK0nI4sVeuXFkr/3DZtY3rZmzD2XCuz7huxg6HDaxUB+NTU5EgDAwMDCIOMW53oL5gi+GXdO3aldzcXH+5E7u4uJjs7GzH/uGyaxvXzdiGs+Fcn3HdjB0mu7mIzAXeUdV3qAYn7ABsk34nIyPjhubNm5OWlub/LJS9Y8eOWvmHyz6euG7GNpwN5/qM62bsMNi5qhpy+1u9LcKJyHnAFcAPgKrq/ZU+nwq0A/YDQ4B7VPV7+7MxwCDAB2Sq6rN2eRfgbmAL0AW4Q1ULqolfngHfsGjRIpo3bw5Yf6FC2Zs2baJXr16O/cNl1zZuuGO3atUKr9dLWVkZUVGWOlXfdmlpKTExMY793YxtOBvOlW2Px0NUVBQtW7YEjv2fat269RbgE0JkwPWy8AUkYg2Scfbz68CISj4PcuwPwGi7owCdgDUBn60Aetr2B8CPbfsW4MFQfTGLcM7sr7/+WrOysrSsrExLSkr85fVtFxQU1MrfzdiGs+EcaJeVlWlWVpZ+//33/vJIWYQbBuxQ1WL7+QvgokAHVb3b7ihY+5HLM9mRwKqAz5YCF4qIBzgXa0AO2qbB8UNEaNWqFSLidlcMDBoFyv/PeL3e42/j2DgXPojIL4HRqnqZ/Xw9cI6qjgniGwv8F5igqpkichfQVlVvsz+fbrvOBr5T1RZ2eQ9giap2CtLmOOy3X9q3bz9k/vz5xMXFAZYgH8oO3NfnxD9cdm3jhjO2iNC7d2/AmhWVD8T1bft8PqKjox37uxnbcDacg9mbN2/G5/MBx/5PZWRk7ACyOYa5qjqXynCSJtf2CxgBLA54ngw8EcQvFngeGBJQNhZ4PuB5FjAJ8ADFHPujMRj4OlRfjAThzF6zZo3fNlNTw9ntuG7Grq29fv16vx0pEsRSIF1EylO1M4B3RSRVRFIARCQBeNYemFeJyJW274fAEDn2p3AY8L6qerFE7VMD26yn/hsYGBjUO+plG5qqFonITcAsEckC1qnqYhF5FMgBZgD/BPoDXe2xthnwuqruFpGZwJMi4gOeU9XNdtPjgXtE5AKgM1ZmHRSRsA/49nlL2Vtk/R3pkKjsLRJeu3Go47ijn11WoS7A3F/0rcAzXPsXVdWvZZVPpxrCrm1cN2MbzoZzMLusrCzYeOHuPmBVXQQsqlQ2JcC+ooa6LwMvBynfDlznML7r+4D3FgmZ+cc0rcx88X/mJG7lugCVudSlf4H2nj178Hg8/vKGsktKSmpd183YhnP1dpcuXUhKSiImJoaYmBiWLl1aJe7Ro0c588wzKSkpobS0lMsvv5zp06cHbbO+ON94440sWLCA1q1b8+233watu3//fq655hr27dtHdHQ048aN4+abbw7aflRU1HHvAzavIhtEDFasWME555zD6aefzldffRW2dr/44gsGDx7MkiVLwtZmbTFr1ixHfhkZGfh8Pl555RX/3tLGhEWLFrFmzRpWrlwZ9PO4uDgWLlzI2rVrWbNmDQsXLmTZsmUN2sdrr72WDz74oEafmJgYHn/8cdavX8+yZcuYPXs2GzZsCHtfTtg34SJBguiQqFXs7Oxsx3G7J2uVdurrdc3AaZp8eBdlP1iZQbRCmZ2I18WWNifjHfkIUP30cPDgwZx55pkUFhaSkZERdNpY+dmJPXToUPr3709paalr0/FZs2YxadKkkHG//PJLysrKGD16NPfee2/Y+1c59nnnncfs2bPp0aMHBw8eZMSIEaxatapOsYL1OTBuQkICXq+XoqIivF6vv06o3/Njjz3G1q1bOXDgAN988w3jx4/n1ltvrTXnYcOGsX37doBqf75paWmkpaXh8/mIj4+nd+/e7N69m379+lXxj0gJwm0YCeL4JQifRBEl9hs/lIXFVokixsH0MDo6mqioKKKjo/3lBQUFjBkzhrPOOouNGzdy1VVX8ZOf/IQXX3yRu+66i9tvv52tW7eyYcMG3n33XVJSUgC444478Hq9pKens3fvXmJiYjhy5Ii/rW+//ZZrrrmG8847j9dee42JEydy+PBhVqxYwc0338zMmTOZM2cOmzdvZt68eagq119/PdOmTeOiiy7iwQcfpLS0FIAWLVowZcoUXnrpJf74xz9y0003sXPnTtavX8/vfvc7cnNzeeihh+jTpw+XXHJJ0LrvvPMOkydPZsmSJXTs2NH/c3r11VcZP348hw8fZvny5dxwww08/fTTbNu2zRH/du3asXDhQnr27MkjjzxCUlLSsX9XmZn069cPn8/Hd999x4ABAyr87AGGDx9Ofn5+lW1Yjz/+OOedd56/nyLCJZdcQlRUFDfeeCO//e1vg/6efT4fp556Klu2bGH8+PGcccYZVf5dBHvesGED0dHR/Oc//2HXrl1ceeWVTJ482e9z7rnnUlBQ4O9feV+nT5/OxRdfXKHN8jpOpIw9e/awdu1ahg4dGnYJ4oQdgE0GXIdFuBEPUGbvmwzcQ1lXuyxEZuTz+Sy/srIqPrfccgsjRowgJyeHUaNGMWLECMaMGcOLL75I//79mTx5Mrfccgvvv/8+V1xxBQsWLGDTpk288847+Hw+3nnnHUpLSyu0tW/fPq644gqWLl3Kz372M/74xz/i9XoZPHgwAwYMAGD27NmcdtppdO3aFa/Xy5lnnslFF13EBx98wNKlS3nvvffw+XyMHDmSc889lzFjxjBv3jwGDRrE1KlTWbNmDUOGDOHOO+9k2rRpALz77rtB644aNYqnn366Qjbo9Xq58sormTp1Kl6vl0GDBjFgwABKS0trxX/hwoWMGTOG5ORk/89769atdOjQwf9zX716NSeffHKVbPDjjz+u9ncb2NclS5bQtm1bDh48yIUXXki3bt04++yzq/yewZKbDh8+zM9+9jNWr15N//79Q2bAa9eu5T//+Q9gZZ0tW7as4PPRRx8F/bdXXFxcJdMtfw41w8jNzeWKK65g5syZNGvWLKi/yYCDwGTAjXMRLlgGHBUVxf/+9z9WrFiBx+Ph4MGD/s9EhH79+uHxeGjdujVHjhzB4/Hw/fff06tXL79f9+7diYmJqdCWqpKdnV1tVhMTE0NqaioXXnghr7/+OkVFRfz617/G4/Hw7bffcuTIER5//HF8Ph+dO3fm8OHDREdHIyKccsopREdHM3ToUH8/y9sOVdfj8fgHj0CegXZMTIw/66wN/8B2vvnmGwYOHOh/XrNmDaNHjz7uDDg9PR2v10vHjh254oorWLVqlf/zYIt/rVu35uyzz2bx4sUMGjSoyr+RwGev18vBgwfp06cPXq83aLYe7gzY6/Vy9dVXM2bMGK666iq8Xq/JgA2aFtavX8+iRYvYu3cvL7zwAl6vlzlz5lTwCfb6dN++ffn000/9z1u3bgXghRde8Ld1+PBhXnjhBb9PcnIyeXl5JCQksHPnTn/5xIkTufbaaxk8eDA333wzAAMGDGD58uX8/ve/x+v18vnnn9OjR49q+xQdHY2qsmbNGk455RR
|
2019-12-15 17:36:13 +01:00
|
|
|
],
|
|
|
|
"text/plain": [
|
|
|
|
"<Figure size 360x288 with 1 Axes>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
2019-12-14 21:17:02 +01:00
|
|
|
"source": [
|
|
|
|
"for index, peak in enumerate(peak_labels):\n",
|
2019-12-16 23:04:02 +01:00
|
|
|
" plot_hist(peaks[peak], calculate_bins(peaks[peak]) + bin_offsets[index],\n",
|
|
|
|
" scale_factors[index],\n",
|
|
|
|
" save=(f'muon_{peak}_spec', 'vorversuch'))"
|
2019-12-14 21:17:02 +01:00
|
|
|
]
|
|
|
|
},
|
2019-12-21 21:13:24 +01:00
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"source": [
|
|
|
|
"# Statistische Auswertung der Langzeitmessung"
|
|
|
|
]
|
|
|
|
},
|
2019-12-14 21:17:02 +01:00
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 10,
|
2019-12-14 21:17:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
2019-12-21 21:13:24 +01:00
|
|
|
"outputs": [],
|
2019-12-16 23:04:02 +01:00
|
|
|
"source": [
|
2019-12-21 21:13:24 +01:00
|
|
|
"counts = load_counts('../messungen/LM_2019_12_20.txt')\n",
|
|
|
|
"interval = (24, 150)"
|
2019-12-16 23:04:02 +01:00
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 16,
|
2019-12-16 23:04:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
2019-12-21 21:13:24 +01:00
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"(2284.5670041107596,\n 17.920165966087293,\n 14788,\n 5208.75,\n [1691.0727468217476,\n 1941.9569883386273,\n 2073.5778898432864,\n 2150.8399584168337,\n 2198.4854603882904,\n 2228.649422367671,\n 2248.0403530470658,\n 2260.622878770272,\n 2268.835615801081,\n 2274.216322707795,\n 2277.750151601415,\n 2280.0746994393876,\n 2281.6053663448415,\n 2282.6139632173627,\n 2283.2788508733183,\n 2283.717287097231,\n 2284.006453996329,\n 2284.197195887302,\n 2284.3230246968747,\n 2284.4060361778124,\n 2284.4608023152377,\n 2284.4969346923817,\n 2284.5207736832017,\n 2284.536502054614,\n 2284.546879313538,\n 2284.553726048772,\n 2284.5582434194002,\n 2284.5612239170055,\n 2284.5631904099864,\n 2284.5644878772227,\n 2284.56534393021,\n 2284.565908743696,\n 2284.5662814009484,\n 2284.566527275832,\n 2284.5666895012137,\n 2284.5667965356365,\n 2284.5668671557096,\n 2284.566913750017,\n 2284.5669444924033,\n 2284.566964775875,\n 2284.5669781586757,\n 2284.5669869884937,\n 2284.5669928143056,\n 2284.5669966581095,\n 2284.566999194207,\n 2284.5670008674947,\n 2284.5670019715108,\n 2284.567002699928,\n 2284.567003180529,\n 2284.567003497624,\n 2284.5670037068394,\n 2284.5670038448775,\n 2284.5670039359534,\n 2284.567003996044,\n 2284.5670040356918,\n 2284.5670040618506,\n 2284.56700407911,\n 2284.5670040904974,\n 2284.567004098011,\n 2284.567004102968,\n 2284.5670041062385,\n 2284.5670041083968,\n 2284.5670041098206,\n 2284.5670041107596])"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 16,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
2019-12-16 23:04:02 +01:00
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2019-12-21 21:13:24 +01:00
|
|
|
"continous(counts, interval)"
|
2019-12-16 23:04:02 +01:00
|
|
|
]
|
2019-12-14 21:17:02 +01:00
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 12,
|
2019-12-14 21:17:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
2019-12-21 18:28:41 +01:00
|
|
|
"outputs": [],
|
2019-12-14 21:17:02 +01:00
|
|
|
"source": [
|
2019-12-21 21:13:24 +01:00
|
|
|
"poisson, gauss, N = binned_likelihood(counts, interval)"
|
2019-12-14 11:43:02 +01:00
|
|
|
]
|
2019-12-16 23:04:02 +01:00
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 13,
|
2019-12-16 23:04:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
2019-12-21 21:13:24 +01:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"((<Figure size 360x288 with 1 Axes>,\n <matplotlib.axes._subplots.AxesSubplot at 0x7f3b30ae5278>),\n 2263.6033071565366,\n (31.093969139121782, 31.90186452553553),\n -146787.68145272764)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 13,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"image/png": [
|
|
|
|
"iVBORw0KGgoAAAANSUhEUgAAAWAAAAEYCAYAAABiECzgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3hUxfrHP5NCAgkJJaFDQu8kCIogVUCKBbFgA68ooCD6QwQpKioqKKjXa5eLXGyXi4JcmoIgoIj0ktB7QgktCSkkJNls5vfH7uZuwm6279lN5vs8efLu7LzzfeeczMmZ73lnjpBSoqCgoKDgfQRoHYCCgoJCRYW6ACsoKChoBHUBVlBQUNAI6gKsoKCgoBHUBVhBQUFBI6gLsIKCgoJGUBdgKxBCBAghnhZCXBZCtLNRt5YQ4rwQYrxZWYQQYoYQYoIQ4lshxDhj+etCiC1CiE3GnxQhRG8b7W8zq/+bWzqooKCgOYK0DsCHEQdsB3LLqiSECADeBnaV+uo9YLaU8rQQohLQxFi+C5grpcwx+v4M/G4jljVSytcdjF9BQcHHoS7AViCl3AsghLBVdQowHxhrKhAGp/7AdiFEBBAO/N3Y7ioz3yHAKmlcDSOEmInhnOiBbCnlHGO99kKIKUBlYKeUcrVrvVNQUPAFVOgLsBBiLVDbwlczpJQr7PDvA+RKKbcLIcaafVULiAWOSyn/EEKMAj4BnijVxBPAY8a2BgC3SinvMH7eJIT4VUq5D3hXSrlDCBEI/CGEyJZS/uFIXxUUFHwPFfoCLKUc4GITQ4CLQoipQHuguhAiB/iP8fvtxt9/Aq+YOwoh4oFjUsprxqIOQBVjWwBngWhjnDuMv/VCiM1AH0BdgBUU/BwV+gLsDIy6bQMp5Rkp5QSz8lbALinlv4yft2LQfQ8DMcCxUk09B8w0+5wAdJVSvmP0vx04YWz3NinlV8Z6zYGf3N8zBQUFb0NlQViBEKK6EOIVIBIYI4S41fhVB2C1Wb0xQognjeUDhBCDjF+NAl4UQkwDhgPPmvnUBkKklMmmMinlr8AeIcRsIcSbwCDgPJAF3CWEeFUIMRfDnXG4Z3ptHUKIMRWBUyveisKpFa9WfbUJKWWF/AHudpO9y83t2c3pqK8WnC7G6BVOR3l96Zy6GKOmx9eXzqknzrU9PxX5DvhuN9nubs8RTkd9teB0JUZvcTrK60vn1JUY3c3pKK8vnVNrtrs4LUIYr9oVDlWrVpUtW7YEID09nRo1ajhlp6SkUK9ePZfacJbTUV8tOF2J0Vuctvp65coVAKKjo10+jt46vr50Tq3xlucxs3v37lQpZTQ2UOEewgkh7gbujomJYc2aNQBkZmYSGRnplH3s2DFatGjhUhvOcjrqqwWnKzF6i9NWX7dt2wbArbfe6vJx9Nbx9aVzao23PI+Z6OjoDCHEPGCllHIlVlDhLsDGg7EyPj5+dFRUVHG5s3ZycnKx7Y72HOV01FcLTmdj9CZnWbyPPfYYAKmpqR47157oqy+dU2u85XjMZEopbT74q3AXYAUFR3H06FEAatasqXEkCuUNml+AhRCrgTCzog5APeBhDLmy2cbyRsBMKeXCUv5fAK3Mip6TUu4vg69YgkhNTQUM0wYTHLXz8/NJTU11qQ1nOR311YLTlRi9xWmL98knnwTgm2++8Rqnq2360jm1xlvOx0ykv0gQ30gpFwMIIZoAU6SUeUKIo8BQKeUZ43fLgSUW/C9KKZ+xl0xJEFHodDrS0tKKHy7p9XoKCgrKtMPCwhyq76ytBaetvr711lsAXL9+/YYYPcXpzuOoxTkNDQ0lPDy83IwZJ/z8Q4IwXXyNeB742Fi+1VRoYdmuOaoKIV4GCoEc4AspZaEHQ/Z7nDt3jmrVqlGrVi2EEOh0OoKDgwGs2jk5OYSFhZVZxx22Fpz29rVJkyY3xOhpTnccR2+f06CgINLS0khLS6N2bUtbrSiY4JU0NHs2vTHuGrZQSnmfBf+vMMgPyRa+uwlIlFIWCiHmYNhF7E0rcYwBxgDUqVOn06pVqwDD9CQkJMQp25R24kobznI66mv6HRgYSNOmTQkIMKSBSymLd32zZuv1egIDA+2u76ytBaetvp45cwaARo0a3RCjpzjdeRy1OKdSSk6cOIFerwf8f8w46te5c+dkwKB5GDBPSjmP0nBk1YYnf4AXgLsslNcGvrOzjYHARnvqxsXFSROuXLnitL1r1y6X23CW01Ff0+9Dhw7JgoKC4u/tsa9du+ZQfWdtLTht8R45ckQeOXLEYoye4nTV9oVzun///mLb38eMozZmK+/K+vGJlXDGDW4GYLbHghnGAV+Uqt/QuDUjxv0RTGgOnLCHU6evmAtQFBxH3bp1qVu3rtZhKJRDaK4BG3EPZhuTmyCECAE6SylfK1V/MfAShm0eo4UQ72B4c0VLYGJZRKYsiGr1mlTYLAi9Xl88NTR9tmVLKdHpdHbXd9bWgtMWb+XKla3G6ClOV9v0hXNaVFRk8e/UH8eME7bfZEEgpfyvlfJ84E4L5d3M7Ccc5FoJrKxSr8XoatVrEBRomARUpCyIK1euEBgYWPzgBLBpFxQUOFTfFVsLzrJ4TRep4ODgG2L0FKc7j6M3Oc3tgICAcjNmnPCzKwvCJyQILaCXkm2n0rUOQ8EKzp49y6BBg2jdujVt27bl448/Lv6uevXqNv2vX79Or169iu/IvvzyS5599tkSdQoKCujZsyeFhWUnzZw9e5azZ8860QsFhbLhE3fA3oRJggip04wlO07RqrqSIHxhulp66iylZNasWXTp0oXs7Gy6dOlC3759adOmDYDNWBYsWMCQIUMoKipCr9ezb98+2rVrV6JOYGAgvXv35vvvv+ehhx6y2leTMqYkCCVBOGD7jwThTZgkiOjGrUdvOpnB3OqG1JSKKkG8sfIgB89n2kwvKirSExBgX8pSm3oRTB/YwqWpc6NGjahZsybBwcHUqFGDVq1acfnyZeLi4orrJCUlMXDgQHr06MFff/1FvXr1WLFiBZUrV2bx4sUsWrSouM2DBw8yfPjwG6SX+++/n2nTpvHoo49anZqb+mfuqyQIJUEoCcIFRIQGkZGrY8uJVNuVFTRFUlISCQkJdOnS5YbvTpw4wbPPPsvBgweJjIxk6dKlFBQUcPr0aWJjY4vrHThwgHbt2t3g365dO3bu3OnJ8BUUrKLC3QGbJIhGMTGEVwpk6c4kGnb93yYrFU2CmD6wRYmEfGu2ebK5PfXtmaIOGDCAS5cuURozZ87knnvuQUrJ1atXue+++5gzZw6VK1cunjLrdDp0Oh2xsbG0bdsWnU5HfHw8J0+e5MKFC0RGRhbXTUpKomrVqlSpUsViLJUqVSIjI4Nq1aoBSoJQEoSSIDwGabYXxO3t6rD+0CWm94+tsBKECVpMV9euXVvmEtqcnBwefvhhhg8fzv33339DG8HBwYSEhJSYchcWFhIREUF+fn5x+aFDh2jfvr3VqXl+fj5hYWFW+9qgQQNASRCO2kqCUBJEmbirQ12y8grZnpRpu7KCVyGlZNy4cbRu3ZqJE8tM7b4B1atXR6/Xk5eXBxjkh/bt21usm5aWRnR0dIkLSGmEh4cTHu7196AqVABUuDtg8+0oW1cXVA0JZPWBi3RvakhtqmgShOmzLdvbWRBbtmxh0aJFtGvXrvjB25tvvsmgQYaXTpskCJMNFGc86HQ6+vbty6ZNm+jbty/79+9n3bp1LFq0CCkldevWZfPmzej1etatW8fAgQPL7Gtubi5ACQnG3f1XEoRvjxknbLskCM33gNDqx7QXxKQf9sk2r/4irxcUlljLba/tj+vaK8JeENu3b5fDhw+3WX/o0KEl9nmwxKv2gnDOVntB+MleEFrizg51ySnQs/m4yoYoT+jYsSN9+vQpcUdWGgUFBdx7772YXs6qoOBtVGgJIjU1lVbVoGpIAEt3nqZjrUAlQfiIBOEOzhEjRhTLEpbqBAYG8sgjj6DT6crklSoLwilbSRAqC+IGSAtvxOjboibrjqYTHmnQgVUWhPefmJvbWnCWxasWYqgsCCf8VBaEvej
|
|
|
|
],
|
|
|
|
"text/plain": [
|
|
|
|
"<Figure size 360x288 with 1 Axes>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"maximize_and_plot_likelihood(poisson, (1000, 3000), save=('poisson', 'haupt'))"
|
|
|
|
]
|
2019-12-16 23:04:02 +01:00
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2019-12-21 21:13:24 +01:00
|
|
|
"execution_count": 14,
|
2019-12-16 23:04:02 +01:00
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
2019-12-21 21:13:24 +01:00
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"text/plain": [
|
|
|
|
"((<Figure size 360x288 with 1 Axes>,\n <matplotlib.axes._subplots.AxesSubplot at 0x7f3b301ed9e8>),\n 2269.835038293664,\n (30.152362502227334, 30.977313295185468),\n 206.42320956201473)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"execution_count": 14,
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "execute_result"
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"data": {
|
|
|
|
"image/png": [
|
|
|
|
"iVBORw0KGgoAAAANSUhEUgAAAWAAAAEYCAYAAABiECzgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3iURdfGf5NNoySbCoSWhNClSQCBAKEjTUUQC6goAvL68VoQsKEoChbUV7EgoiJYQFFEwUIxgICU0CMd0ujplSSbzXx/bHZdQspuku3PfV17cXZ2Zu5zZjfDM/dzZh4hpUSBAgUKFFgfbrZ2QIECBQpcFcoErECBAgU2gjIBK1CgQIGNoEzAChQoUGAjKBOwAgUKFNgIygSsQIECBTaCy0/AQoipCq/C6wy8rhSrs/C65AQshBht9HZqeeWWthVehbc825VidTbe6sAlJ2CgokEbbUVb4VV4y7NdKVZn4zUbwtV2wgUFBUlfX18CAgIAuHjxIo0bNwYgPT3dUG5pW+FVeMuzXSlWZ+GNj49PlVIGUx1IKV3qFRkZKVNSUqQesbGxBtu43NK2wmu/vElJSTIpKckm8brKGDsTLxArqzkfuVdr1nZAlGo1o8PDw8nKyjKUFxYWkpqaCnBduaVthdd+eR944AEAVqxYYfV4XWWMnYxXLYRYCvwipfwFM+AyE3DpwPzSrVu3KWq1mqCgIAASExMNNmA1W+G1X14PDw8AjH8n1ozXFcbYmXiBLClltTIjXPUmnAIFChTYHC5zE85IgpiyadMm1Go1AKdOnaJ169aAbjmhL7e0bU3ejIwMSkpK0Gg0FBcX4+6uW/iUlJTg5uZmFduReNPS0gAIDAy0eryOPMYeHh64ubnh7+8PONffUGW8LVu2PAPEoEgQFcOVJYi0tDQCAwMJDAwkPz+fevXqAaDRaAzLbUvbeXl5DsN77tw5AFq0aGH1eB11jOvWrUtaWhppaWlO+TdUGS81kCBcZgJ2ZWg0GgIDAxFC2NoVh0DDhg1t7YLDQQhBYGAgly9ftrUrDgWXmYBdOQuipKSE4uJiQJd2qNFoANBqtYY6lrYdiVd/FWmLeB19jEtKSqz2u7ajv10lC6Iq6CWI9p1udjkJ4vLly4blYlFRkcEGrGY7Eq9+clGpVDaJ15HH2M3NzSn/hirjRcmCMB2puYW2dkGBnSMxMZHExERbu6HABeAyV8B6CcKrUUtS0jIM5Xa0jLGYrc+AAPtYpto7rz4zSJEgFAnCRF5FgqgKegnCK6TVlGMZMLaNfS1jXF2CSE5O5v777+fKlSu4ubkxefJknnrqKQD8/f3Jzc2ttP9r164xevRo/vzzTwA+//xzjhw5wptvvnmdD0OHDuXPP/+sVF7Q36xUJAjzeRUJwjy4nAShEoI/T6Xb2g0FZeDu7s6bb77J8ePH2b17Nx9//DHHjh0zuf3y5cu58847UalUABw5coSOHTteV8fT05NBgwaxevXqWvVdgYLqwmWugPUShF+TCLadSefylau4q9zsaRljMdtYglj4x2lOXc0HdEtH/dVeTey2Deszd1Q7oPrL46CgIPz9/dFoNHh7e9O2bVsSExNp1aoVoEulS0hIYPTo0URFRfH333/TuHFjfvzxR+rUqcM333zDypUr0Wg0aLVajhw5wvjx42/gHTlyJHPnzmXs2LHl+qlIEIoEUQ1eRYKoCnoJonWHzlNyi0o4lSXo1zrIbpYx1pIggOvygWvDFm6iVpfHCQkJHD58mKioqOuW5R4eHpw5c4ZVq1bx2WefMW7cOH7++WfGjx9PQkKCYbIG+Oeff+jSpQtCXO/bzTffTGxsbKXygv6oQUWCMJ9XkSDMg8tMwHr4eHmQ7+HGb3GX6de6ekd4OjKeHdbKIrulTMHgwYO5fPnyDVfSCxYs4PbbbwcgNzeXsWPHsmjRInx9fW/oIzw8nC5dugDQtWtXEhISSE1NNWwTBUhOTsbHxwe1Wk1eXt517VUqFZ6enuTk5BjOdy0LPa+pcSlQUF24zARsvBGjX7N6/BF3kSf6NLKnZYzFbHvJgvjtt98M5XqtVm9rNBoKCgoYO3Ys99xzD7fddtt1E6BGo0Gj0eDp6WkoF0JQWFiIu7s7BQUFhvLDhw/ToUMHNBpNufEWFhbi4eFR4Thcu3YN0GnGNYlXkSCc52/IoSUIIUQE8CpwAGgKpEkpXxFCuAFTgPnAQCllnFGbkUAHoA4wABgspdSU6TcMmAucAcKAmVLKXMqB8VkQw9o3ZOu5M8TnuuHl5WUXyxhXz4KQUjJ9+nTat2/PrFmzrrvC1tcpu0R3c3NDpVLRoEEDSkpK0Gq1eHt7c+zYMTp16oSHh8cNvNnZ2QQHB+Pt7V2hP5cuXQKuPwuituOtzFYkCNNsZ5AgrJUFEQCsklK+JaV8HLhHCBEJdAb2APnGlYUQ4cBtUso3pJTzgMcALTdiCfCJlHIhEAfMMcWZqBZ+eLm78Xucsm/dXrBz506+/vpr/vzzT7p06UK3bt349ddfTW4/ePBgduzYAUBcXBxLly4lLCyM9u3b06tXL0O9mJgYRowYUev+K1BQHdjkOEohxAngDinlidL3CcAo/RWwEOIZoCGQhG7yjpFS/lmmDw8gF/CWUkohRFdgmZSyazl8Uyl9kmlISEjkmjVreDc2n7MZGhb2UhEUGAjolhZeXl5WsY2fMWVpLpVKZbhBZbz8r60sCFNsS/MeOnSIDz74gGXLllXKe9999/Hyyy/TqlWrCvtMSkoCoHnz5laP157H2BTe06dPXyf1OMvfUGW8UVFRiYBOk9BhqZRyKaagus8yqu4LGAO8V6YsAehg9P5jYAsgAC/gONC6TJsQINPofUvgfFX8+mfC/bA/WYbOWS+/+WOX1MNZn2d19OhRg52bm2uwi4qKrGZbg/ezzz6TxcXFFfLm5ubKL7/8ssp+Tpw4IU+cOGGTeO19jKviNf6tOdPfkKWeCWfVjRhCiAHo9Nwnq6iaDewtjbEQOAz0LlMnFagj/s2L8gWumurLoHYN8VAJ/j5fYGoTBXaOhx9+2HAlVh48PT0Nz3tToMAeYLUJuPSm2jDgcaCREKJXJdW3AC2M3ocCp0r7aSaEUEndDbkYoHtpnShgg6n+qOt40DsiiN0XCg2J9woUADRp0oQmTZrY2g0FLgBrZUFEAquBWHSTZj3gw1It+DFADUwVQnwjpdwtpdwohOgthHiltO7PUspdpd2tBmYDO4BHgReFEEOB5sBTlfhww3nAfcPqs+1UCjuPJdG2YT1bp7JYzLaXNDRH4dVrfcpOOCUNzURe+05Dk1LuB+pX8PGrpa+ybeZV0FdvIzsBeNhEH254JNGYHj4s2BjP7vMF9LkpFFDS0CxlOxJvYaHuyFIvLy8lDc1MXiUNzTy43GE8xgis70X7YE9+jbukyBAKDLhw4QIXLlywtRsKXAAuuRPOeDnRvZE7XxzNY/eJZBp4/rvPw5mWT4oEoZwHbElbkSCqL0FYPQ3N1i99GpoeW3bskeHPrJdv/X5CSUOzkL1nzx7Zp08f2atXL/nSSy/JmTNnytmzZ8uMjIxq9bl582Y5c+bMKuu/++67hnizsrJk3759TerflDS0J598Ur766qty5MiRMicn54Y61kxDKygokG+++ab09vYu15eioiL58ccfS7VaLadNmybz8vKklFIuWbJEdu7cWa5evdqs8X733XeVNDSjchwlDc0eofZW0TsiiPVHLrqMDLF8+XIOHToE6K5kli9fTlycbhe4RqPhq6++MrwvKChg+fLlHD9+HID8/HyWL1/O6dOnAa47KL0i9OjRg759+9K7d2/mzZvHwoUL6d+/PwMHDjQ8LNQcDBo0iLfeeqvKev/73/8Mtq+vL5s3bzabqyL89NNPPP/883z33XfUr1/R7Y3axdatW5k3b94N5bt372bs2LEUFFScUvnoo4/i5+fHtGnTqFu3LqBL2+vSpQvjx4+vlLfseBuPq4KaweUliMLCQqJb+PHaxlRiz12le2lasTMtn8pKEFJKtFqt4SWlNNTRH2Cj1WrRaDSUlJQgpaS4uNh
|
|
|
|
],
|
|
|
|
"text/plain": [
|
|
|
|
"<Figure size 360x288 with 1 Axes>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"maximize_and_plot_likelihood(gauss, (1000, 3000), save=('poisson', 'haupt'))"
|
|
|
|
]
|
2019-12-16 23:04:02 +01:00
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"metadata": {
|
|
|
|
"autoscroll": false,
|
|
|
|
"collapsed": false,
|
|
|
|
"ein.hycell": false,
|
|
|
|
"ein.tags": "worksheet-0",
|
|
|
|
"slideshow": {
|
|
|
|
"slide_type": "-"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": []
|
2019-12-14 11:43:02 +01:00
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"kernelspec": {
|
|
|
|
"argv": [
|
2019-12-16 19:41:50 +01:00
|
|
|
"python",
|
2019-12-14 11:43:02 +01:00
|
|
|
"-m",
|
|
|
|
"ipykernel_launcher",
|
|
|
|
"-f",
|
|
|
|
"{connection_file}"
|
|
|
|
],
|
|
|
|
"display_name": "Python 3",
|
|
|
|
"env": null,
|
|
|
|
"interrupt_mode": "signal",
|
|
|
|
"language": "python",
|
|
|
|
"metadata": null,
|
|
|
|
"name": "python3"
|
|
|
|
},
|
|
|
|
"name": "Untitled.ipynb"
|
|
|
|
},
|
|
|
|
"nbformat": 4,
|
|
|
|
"nbformat_minor": 2
|
|
|
|
}
|