fpraktikum/LM/auswertung/Untitled.ipynb

282 lines
34 KiB
Text
Raw Normal View History

2019-12-14 11:43:02 +01:00
{
"cells": [
{
"cell_type": "code",
2019-12-14 21:17:02 +01:00
"execution_count": 38,
2019-12-14 11:43:02 +01:00
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.hycell": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
2019-12-14 21:17:02 +01:00
"import pandas as pd\n",
"import util\n",
"from scipy.stats import binned_statistic"
2019-12-14 11:43:02 +01:00
]
},
{
"cell_type": "markdown",
"metadata": {
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"source": [
"# Kennlinien PM3"
]
},
{
"cell_type": "code",
2019-12-14 21:17:02 +01:00
"execution_count": 5,
2019-12-14 11:43:02 +01:00
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.hycell": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [
{
"data": {
"text/plain": [
"131.75230566534913"
]
},
2019-12-14 21:17:02 +01:00
"execution_count": 5,
2019-12-14 11:43:02 +01:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eta = .03\n",
"rt = 506/60\n",
"T = 1/eta**2*1/rt\n",
"T"
]
},
{
"cell_type": "code",
2019-12-14 21:17:02 +01:00
"execution_count": 6,
2019-12-14 11:43:02 +01:00
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.hycell": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
2019-12-14 21:17:02 +01:00
"outputs": [
{
"data": {
"text/plain": [
"0.029514066805047763"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
2019-12-14 11:43:02 +01:00
"source": [
"N=1148\n",
"c=N/T\n",
"dc=np.sqrt(N)/T\n",
"dc/c"
]
},
{
"cell_type": "markdown",
"metadata": {
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"source": [
"## Plot"
]
},
{
"cell_type": "code",
2019-12-14 21:17:02 +01:00
"execution_count": 25,
2019-12-14 11:43:02 +01:00
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.hycell": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [
{
"data": {
2019-12-14 21:17:02 +01:00
"image/png": [
"iVBORw0KGgoAAAANSUhEUgAAAWAAAAEYCAYAAABiECzgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXwV1fn/3yc3+75A2A2LYd8TIawirrWoIEK1dS2KtVTU1rXa2q9KtWq1tlh+olTqjgsIIosiKrsYVlkCBMK+Zd/Icpfn90dubpMQst7MnXtzPq9XXjn3zDnzec5kOMy87zNnlIigpaWlpWW8/DwdgJaWllZrlZ6AtbS0tDwkPQFraWlpeUh6AtbS0tLykPQErKWlpeUh+Xs6gJZSTEyM9OjRA5vNhr9/xTAbU25sv5KSEkJCQkzt19TYKr1aekxG+tV2LFtyTGb2c/c5W59fVlYWSini4uIM8XP3ObRly5YsEWmLOyQiPvnTp08fERHJzMyUSjWm3Nh+qamppvdramyVXr7kV9uxbMkxmdnP3edsfX7r1q2THTt2GObn7nMISBU3zVM+dwWslLoOuK5Tp05kZWWRn5/v2taYcmP7lZWVmd6vqbFVerX0mIz0q+1YtuSYzOzn7nO2Pr/27dsTFRXltvPXneNrSFsgSik1F/hCRL6gGfK5Cdh5QL7o27fvPW3atAGg8ndjy41pe+TIkSb1M9qvKbFV9fIlv9qOZUuNyex+7jze9flZrVaioqIICAgwxM8dHjXK+SIyHTdIfwmnpaVlqJYuXcr777/v6TBMISU+9ihyFQRxz/bt28nPzycqKgqA3NxcHA4HVqsVh8OBn1/F/z+1levbXrNcCekb289Iv6bGVvULCF/xq+1YXqhtQEAAfn5+xMTEVDufGlOuWrd//3569uzZ6H4t5ecOj8b47dixg9DQUBITEw3xc4dH1XLbtm3TgW9xA4Lw+JdlLfVT25dwaWlpkpmZKQ6HQ8rLy131tZXr216zXFRU1KR+Rvo1NbZKL1/yq+1Y1tbW4XBIZmampKWliYj+Eq4h/bzZz+gv4VoVgrBarcTFxaGU8nQoWl6iynQpq9Xq6VB8RmVlZZSWlno6DFPI576EqysLwuFwYLPZALDb7a762sr1ba9ZFhGsVmuj+xnp19TYKr1aekxG+tV2LOvq53A43Jbl0tqzIJYsWYK/vz+TJk3SWRDN6WxGSR1ZEKdPn3Z98wrUW25M2/Ly8ib1M9qvKbFV9fIlv9qO5YXa+vn56SwIN2UlDB06lMjISLdlKBiZBbHlSC6W8LgQW2GWzoLwRoWHh7vKy5Yto2/fvhw9etStHnfeeSefffYZAHfffTd79uyps/3cuXN55513Grz/+fPn07ZtW5KTk+nbty9vvvmmq14pxerVq11tFy1ahFLKFc+0adNISkpi4MCB3HTTTRQVFTV2eFperh49etCnTx9Ph9Eo2RzC/A0ZTH1jI5awmE7u2q/PXQHXhyAaemvb0khg9erV3H///XzxxRd06NDBrX4Oh8M11jlz5mC32+uMbdq0aVgslgu2qXmLbrfbmTJlCq+88grZ2dkMHjyYq666CrvdTv/+/fnoo48YP348drudDz74gIEDB7riefHFFwkLC8NisfDII48we/ZsHn/88Tr9GnpcNILwDgRx5swZ1+PDZkYQ2bl5bMzIY/WBHFbvzyG/1Hk+KNAI4gJyN4LYciSXDQfOMjIxnqSEmAu2bQwS2LhxI/fddx/Lli2jR48eBAQEkJmZyf3338/Ro0cREV577TVGjRrFM888w4kTJzh06BBHjx7lwQcfZObMmRw4cIDJkyczcuRINm3aRKdOnfj000+JjIzEz8/PlT41btw4XnjhBVJSUoiJieGBBx5g6dKlBAcHs2TJEtq1a8czzzxDVFQUDz/8MAcPHuTBBx8kMzOTkJAQ3nrrLbp06VJtHBaLBT8/PywWC506daJHjx6cOHECi8XC2LFjWbNmDVDxjP6hQ4cYMmSIK57KL7T8/f0pKyvDYrFoBNHKEMSiRYsICAjgzjvvNMSvMR5lNgfbz9pZvus0X+0+RWGZnbBAC6O6RzPwojhmr06HimQItyAIn5uAG6rnlqWRdrri9ldEXJkRlWURoajMRtrpQhwCr36TTu/2EYQH+Z/XFsDhsNO/cwx/vKZnnb5lZWVMnjyZ7777jt69e7uuvH7/+9/z0EMPMXr0aA4ePMiECRPYu3cvAGlpaXz77bfk5OTQv39/7rvvPgAOHDjAO++8w7x585g6dSoLFy50ndS1qbi4mJSUFGbNmsUf/vAH3nzzTZ566qlqbX7729/yxhtvkJiYyPr16/ntb3/LF19c+D/5Q4cOcejQIXr06MH+/ftRSnH55ZezcuVKsrOzuf7668nIyKjW5+6772bFihX07duXF154oc7jpeV7Gjx4MJGRkZ4Ow6Vz5Ta+2Z/D+q+P8c3e0xSXO4gM9mdsjxgmJndlTGIbivJzadOmDSN6tGH4a3kn3eXtcxNwQxGEOCry8ADX76plEaGgxIrDuckhUFBiJSzQcl7binLF/uu79Q0ICCAlJYU333yTV155xVW/evVq14QLUFBQQE5ODiLCNddc43oQoG3bthw/fhwRoVu3bgwYMACr1crgwYM5fPiw6yGTyrGKiAtBBAYGcvXVV7vaf/vtt9Xa5ObmsnHjRm666SZXHGVlZbUiiAULFrB27VqCgoJ4/fXXiYqKwm6343A4mDx5MnPmzCE/P58XX3yRv/3tb9WO/RtvvAHAgw8+yIIFC7jrrruqHSONIHwbQcTGxnp8LYiiMhtf7zrFxuP7WZ+RT5nNQVSIP5d2i+Ca/u255KJIzhUVEhVloSg/19UvIQzsRdklGkFcQA1FEH+a0MdVtlqt55WtVis7Txbxq7c2YbU5CPD347VbhjKwY3it/YqLiwkLC6tWB+ffzvr5+fHhhx/ys5/9jJdeeolHHnmEgIAAHA4HmzZtIiQkpNo+lFKEhoa6Pvv7V1yBK6UICgpy3cIHBgZSUlLi8qi85VdKudpUtquMxeFwVGtjsViIjo5mx44d1cZXXFx8HoL4xS9+wauvvlrtWFSiiZSUFO6//36Cg4Pp169ftXiqHotbbrmFF198kenTp1er1wii9n4t6Wckgkg9dJYD6acY2bszCVFRhiGI/HNW1u7KZN26DNbsz6Lc7qBtRBBTk7sw8qIQrhzUjbzcHFefLIvfhfbrtrUgfG4CdqeSEmJ4/+6UagzYHQn5oaGhLF26lDFjxtCmTRumT5/OFVdcwezZs3nkkUcA2L59O4MHD262V2MUGRlJ165d+eSTT5gyZQoiwo4dO7j44osbva/nn3/e9XhvpUSEgwcPkpCQgIjwxRdf0KtXL3eFr2VSiQh556ykZ55jSdohfvx6BYjwzzV9mD6yE6N6QURwALaSUlRwGRHBAfXvtIHKLipj0c6zrMk4yMaD2dgcQseoYG5NSWBklxDGD+yKn58iKysLf4vxSWE+NwG7OwtiYMdw+rULqTNLABqfBREREcEXX3zB+PHjiYuL4+WXX+ahhx5iwIAB2Gw2xowZw+uvv14NIdjtdpdP5aOMVeOt3HYhBAG4fl+ozdtvv80DDzzAs88+i9VqZerUqTzyyCPnIYjacEvV+iuuuMK1z0qv8vJybr/9dgoKChARBg4cyGuvvXbe30QjCO9AEDm5eWQVlZNVbOXI2TxK5CxZxVbST+Ri27aBrOJyzhaWkVtix2r/H67r5NceAKtDeH3tcV5fe5yaCrQoIoL8CQuyEOIPUaGBBPkJMWHBhAdZ8BcrcZGnCA+yUJhdyGkOEh5oQcpLOL0vm2V7sjiZV8KhnDIcAp2igvhlUnuGdwxk2MXtUEqRn59PTk52o48FbnwQw+cW46lU3759Zc+ePWRlZbluHXbt2kX//v2B2rFD1XJ922uWa0MQjSkb4dfU2Cq9WnpMRvrVdizr6ld57lQ9nxpTrlq3ZcsWkpKSGt2vpfxqq9t4MItPN2fQo30MEcH+HD6TS5HNwtnCUk7mFpNTYie7qMz1HUlVhQcqOsa
],
2019-12-14 11:43:02 +01:00
"text/plain": [
2019-12-14 21:17:02 +01:00
"<Figure size 360x288 with 1 Axes>"
2019-12-14 11:43:02 +01:00
]
},
"metadata": {},
2019-12-14 21:17:02 +01:00
"output_type": "display_data"
2019-12-14 11:43:02 +01:00
}
],
"source": [
2019-12-14 21:17:02 +01:00
"%matplotlib inline\n",
"fig, ax = set_up_plot()\n",
2019-12-14 11:43:02 +01:00
"calib = pd.read_excel('../messungen/vorversuch_kennlinnien.xlsx', sheet_name='Kennl')\n",
2019-12-14 21:17:02 +01:00
"ax.set_xlabel('Spannung [V]')\n",
"ax.set_ylabel('Events')\n",
"ax.plot(calib['U/V'], calib[\"N123\"], marker='.', label='Kennlinie PM3')\n",
"ax.axvline(2300, linestyle='dotted', color='gray', label='Gewaehlte Spannung')\n",
"ax.legend()\n",
"ax.set_xlim([calib['U/V'].min(), calib['U/V'].max()])\n",
"save_fig(fig, 'kennlinie_pm3', 'vorversuch')"
]
},
{
"cell_type": "markdown",
"metadata": {
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"source": [
"# Peakhoehen der Photomultiplier"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.hycell": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"peaks = pd.read_excel('../messungen/vorversuch_kennlinnien.xlsx')\n",
"peak_labels = ['P1', 'P2', 'P3']\n",
"bin_offsets = [8, 15, 40]"
]
},
{
"cell_type": "code",
"execution_count": 111,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.hycell": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"peaks['dP1'] = calculate_peak_uncertainty(peaks[\"P1\"])\n",
"peaks['dP2'] = calculate_peak_uncertainty(peaks[\"P2\"])\n",
"peaks['dP3'] = calculate_peak_uncertainty(peaks[\"P3\"])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.hycell": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"for index, peak in enumerate(peak_labels):\n",
" plot_hist(peaks[peak], calculate_bins(peaks[peak]) + bin_offsets[index], save=(f'muon_{peak}_spec', 'vorversuch'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.hycell": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.hycell": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [
{
"data": {
"text/plain": [
"0 2.4\n1 3.0\n2 9.8\n3 11.2\n4 200.0\n5 3.0\n6 5.6\n7 5.4\n8 5.0\n9 3.6\n10 3.2\n11 4.2\n12 2.4\n13 2.2\n14 4.6\n15 6.4\n16 2.6\n17 3.4\n18 5.2\n19 3.4\n20 2.4\n21 3.4\n22 4.4\n23 3.0\n24 5.8\n25 9.0\n26 2.6\n27 2.0\n28 3.6\n29 3.4\n30 5.2\n31 3.6\n32 4.2\n33 2.4\n34 4.4\n35 4.2\n36 2.8\n37 3.2\n38 2.8\n39 2.6\n40 3.2\n41 2.8\n42 7.4\n43 4.4\n44 5.2\n45 9.0\n46 4.2\n47 6.2\n48 6.4\n49 11.4\nName: P2, dtype: float64"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"peaks['P2']"
2019-12-14 11:43:02 +01:00
]
}
],
"metadata": {
"kernelspec": {
"argv": [
2019-12-14 21:17:02 +01:00
"/usr/bin/python3",
2019-12-14 11:43:02 +01:00
"-m",
"ipykernel_launcher",
"-f",
"{connection_file}"
],
"display_name": "Python 3",
"env": null,
"interrupt_mode": "signal",
"language": "python",
"metadata": null,
"name": "python3"
},
"name": "Untitled.ipynb"
},
"nbformat": 4,
"nbformat_minor": 2
}