mirror of
https://github.com/vale981/fibre_walk_project_code
synced 2025-03-04 17:31:39 -05:00
362 lines
11 KiB
Python
362 lines
11 KiB
Python
"""A demonstration of the ringdown spectroscopy protocol."""
|
||
|
||
from rabifun.system import *
|
||
from rabifun.plots import *
|
||
from rabifun.utilities import *
|
||
from ringfit.utils import WelfordAggregator
|
||
from rabifun.analysis import *
|
||
import multiprocessing
|
||
import copy
|
||
|
||
|
||
def solve_shot(
|
||
params: Params, t: np.ndarray, t_before: np.ndarray, t_after: np.ndarray
|
||
):
|
||
"""A worker function to solve for the time evolution in separate processes.
|
||
|
||
:param params: The parameters of the system.
|
||
:param t: The time axis.
|
||
:param t_before: The time axis before the EOM is switched off.
|
||
:param t_after: The time axis after the EOM is switched off.
|
||
"""
|
||
|
||
solution = solve(t, params)
|
||
amps = solution.y[::, len(t_before) - 1 :]
|
||
|
||
return t_after, amps
|
||
|
||
|
||
def make_shots(
|
||
params: Params,
|
||
total_lifetimes: float,
|
||
eom_range: tuple[float, float],
|
||
eom_steps: int,
|
||
num_freq: int = 1,
|
||
):
|
||
"""Generate a series of shots with varying EOM frequencies.
|
||
|
||
The implementation here slightly varies the off time of the laser
|
||
so as to introduce some random relative phases of the modes.
|
||
|
||
:param params: The parameters of the system.
|
||
:param total_lifetimes: The total time of the experiment in
|
||
lifetimes.
|
||
:param eom_range: The range of EOM frequencies in units of
|
||
:any:`params.Ω`.
|
||
:param eom_steps: The number of steps in the EOM frequency range.
|
||
:param num_freq: The number of frequencies to drive. If a number
|
||
greater than 1 is given, the EOM will be driven at multiple
|
||
frequencies where the highest frequency is the base frequency
|
||
plus an consecutive integer multiples of :any:`params.Ω`.
|
||
"""
|
||
|
||
solutions = []
|
||
shot_params = []
|
||
|
||
rng = np.random.default_rng(seed=0)
|
||
off_time = params.laser_off_time or 0
|
||
analyze_time = params.lifetimes(total_lifetimes) - off_time
|
||
t_after = time_axis(params, total_time=analyze_time, resolution=0.01)
|
||
|
||
for step in range(eom_steps):
|
||
base = params.Ω * (
|
||
eom_range[0] + (eom_range[1] - eom_range[0]) * step / eom_steps
|
||
)
|
||
|
||
current_params = copy.deepcopy(params)
|
||
current_params.drive_override = (
|
||
base + params.Ω * np.arange(num_freq),
|
||
np.ones(num_freq),
|
||
)
|
||
current_params.drive_phases = rng.uniform(0, 2 * np.pi, size=num_freq)
|
||
|
||
off_time = rng.normal(off_time, 0.1 * params.laser_off_time)
|
||
|
||
current_params.laser_off_time = None # off_time
|
||
current_params.drive_off_time = off_time
|
||
|
||
t_before = time_axis(params, total_time=off_time, resolution=0.01)
|
||
t = np.concatenate([t_before[:-1], t_after + t_before[-1]])
|
||
shot_params.append((current_params, t, t_before, t_after))
|
||
|
||
pool = multiprocessing.Pool()
|
||
solutions = pool.starmap(solve_shot, shot_params)
|
||
return solutions
|
||
|
||
|
||
def process_shots(
|
||
params: Params,
|
||
solutions: list[tuple[np.ndarray, np.ndarray]],
|
||
noise_amplitude: float,
|
||
num_freq: int,
|
||
):
|
||
"""
|
||
Calculates the normalized average Fourier power spectrum of a
|
||
series of experimental (simulated) shots.
|
||
|
||
:param params: The parameters of the system.
|
||
:param solutions: A list of solutions to process returned by
|
||
:any:`solve_shot`.
|
||
:param noise_amplitude: The amplitude of the noise to add to the
|
||
signal.
|
||
|
||
The amplitude is normalized by 2/η which is roughly the steady
|
||
state signal amplitude if a bath mode is excited resonantly by
|
||
a unit-strength input.
|
||
|
||
:param num_freq: The number of frequencies to drive. See
|
||
:any:`make_shots` for details.
|
||
"""
|
||
|
||
rng = np.random.default_rng(seed=0)
|
||
|
||
noise_amplitude /= params.η * np.pi
|
||
|
||
aggregate = None
|
||
for t, amps in solutions:
|
||
signal = output_signal(t, amps, params)
|
||
signal += rng.normal(scale=noise_amplitude, size=len(signal))
|
||
window = (0, t[-1])
|
||
|
||
freq, fft = fourier_transform(
|
||
t,
|
||
signal,
|
||
low_cutoff=0.3 * params.Ω,
|
||
high_cutoff=params.Ω * (1 + num_freq),
|
||
window=window,
|
||
)
|
||
|
||
power = np.abs(fft) ** 2
|
||
|
||
# ugly hack because shape is hard to predict
|
||
if aggregate is None:
|
||
aggregate = WelfordAggregator(power)
|
||
else:
|
||
aggregate.update(power)
|
||
|
||
assert aggregate is not None # appease pyright
|
||
|
||
max_power = np.max(aggregate.mean)
|
||
return (freq, aggregate.mean / max_power, aggregate.ensemble_std / max_power)
|
||
|
||
|
||
def process_and_plot_results(
|
||
params: Params,
|
||
ax: plt.Axes,
|
||
freq: np.ndarray,
|
||
average_power_spectrum: np.ndarray,
|
||
σ_power_spectrum: np.ndarray,
|
||
annotate: bool = True,
|
||
):
|
||
"""
|
||
Fits the ringdown spectrum and plots the results.
|
||
|
||
:param params: The parameters of the system.
|
||
:param ax: The axis to plot on.
|
||
:param freq: The frequency array.
|
||
:param average_power_spectrum: The average power spectrum obtained from :any:`process_shots`.
|
||
:param σ_power_spectrum: The standard deviation of the power
|
||
spectrum.
|
||
:param annotate: Whether to annotate the plot with peak and mode positions.
|
||
"""
|
||
|
||
ringdown_params = RingdownParams(
|
||
fω_shift=params.measurement_detuning,
|
||
mode_window=(params.N, params.N),
|
||
fΩ_guess=params.Ω,
|
||
fδ_guess=params.Ω * params.δ,
|
||
η_guess=0.5,
|
||
absolute_low_cutoff=0.3 * params.Ω,
|
||
)
|
||
|
||
peak_info = find_peaks(
|
||
freq,
|
||
average_power_spectrum,
|
||
ringdown_params,
|
||
prominence=0.05,
|
||
height=0.1,
|
||
σ_power=σ_power_spectrum,
|
||
)
|
||
|
||
peak_info = refine_peaks(peak_info, ringdown_params, height_cutoff=0.05)
|
||
|
||
plot_spectrum_and_peak_info(ax, peak_info, annotate=annotate)
|
||
|
||
if peak_info.lm_result is not None:
|
||
fine_freq = np.linspace(freq.min(), freq.max(), 5000)
|
||
fine_fit = peak_info.lm_result.eval(ω=fine_freq)
|
||
ax.plot(fine_freq, fine_fit - peak_info.noise_floor, color="C3", zorder=-100)
|
||
ax.set_ylim(-0.1, max(1, fine_fit.max() * 1.1))
|
||
|
||
ax.set_xlabel("Frequency (MHz)")
|
||
|
||
if annotate:
|
||
annotate_ringodown_mode_positions(params, ax)
|
||
|
||
|
||
def generate_data(
|
||
Ω=13,
|
||
η=0.2,
|
||
g_0=0.5,
|
||
η_factor=5,
|
||
noise_amplitude=0.3,
|
||
laser_detuning=0,
|
||
laser_on_mode=0,
|
||
N=10,
|
||
eom_ranges=(0.5, 2.5),
|
||
eom_steps=20,
|
||
excitation_lifetimes=2,
|
||
measurement_lifetimes=4,
|
||
num_freq=3,
|
||
extra_title="",
|
||
):
|
||
"""Simulate and plot the ringdown spectroscopy protocol.
|
||
|
||
The idea is to have the laser on ``laser_on_mode`` and to sweep
|
||
the EOM frequency over a range of values given in ``eom_ranges``
|
||
in ``eom_steps`` steps. For each step, the laser and EOM are
|
||
inputting into the system for a time given by
|
||
``excitation_lifetimes``. Then, the ringdown signal is collected
|
||
for a time given by ``measurement_lifetimes``. (Lifetime units
|
||
are given by ``η``.) The resulting power spectra are averaged and
|
||
then fitted.
|
||
|
||
:param Ω: The FSR of the system.
|
||
:param η: The decay rate of the system.
|
||
:param g_0: The coupling strength of the system in units of
|
||
:any:`Ω`. Note that the effective coupling strength between
|
||
the ``A`` site and the bath modes is reduced by a factor of
|
||
:math:`\sqrt{2}`.
|
||
|
||
:param η_factor: The factor by which the decay rate of the A site
|
||
is greater.
|
||
:param noise_amplitude: The amplitude of the noise to add to the
|
||
signal. See :any:`process_shots` for details.
|
||
:param laser_detuning: The detuning of the laser from the the mode
|
||
it is exciting.
|
||
:param laser_on_mode: The mode that the laser is exciting.
|
||
:param N: The number of bath modes.
|
||
:param eom_ranges: The range of EOM frequencies in units of
|
||
:any:`Ω`.
|
||
:param eom_steps: The number of steps in the EOM frequency range.
|
||
:param excitation_lifetimes: The time the EOM is driving the
|
||
system.
|
||
:param measurement_lifetimes: The time the system is left to ring
|
||
down.
|
||
|
||
Note that the laser is not turned off during the ringdown.
|
||
|
||
:param num_freq: The number of frequencies to drive. See
|
||
:any:`make_shots` for details.
|
||
:param extra_title: A string to add to the title of the plot.
|
||
|
||
:returns: The figure containing the plot.
|
||
"""
|
||
|
||
final_laser_detuning = laser_detuning + (
|
||
0 if laser_on_mode == 0 else (laser_on_mode - 1 / 4) * Ω
|
||
)
|
||
|
||
params = Params(
|
||
η=η,
|
||
η_hybrid=η_factor * η,
|
||
Ω=Ω,
|
||
δ=1 / 4,
|
||
ω_c=0.1,
|
||
g_0=g_0 * num_freq, # as it would be normalized otherwise
|
||
laser_detuning=final_laser_detuning,
|
||
N=N,
|
||
N_couplings=N,
|
||
measurement_detuning=0,
|
||
α=0,
|
||
rwa=False,
|
||
flat_energies=False,
|
||
correct_lamb_shift=0,
|
||
laser_off_time=None,
|
||
small_loop_detuning=0,
|
||
drive_override=(np.array([]), np.array([])),
|
||
)
|
||
|
||
params.laser_off_time = params.lifetimes(excitation_lifetimes)
|
||
params.drive_off_time = params.lifetimes(excitation_lifetimes)
|
||
|
||
solutions = make_shots(
|
||
params,
|
||
excitation_lifetimes + measurement_lifetimes,
|
||
eom_ranges,
|
||
eom_steps,
|
||
num_freq,
|
||
)
|
||
|
||
freq, average_power_spectrum, σ_power_spectrum = process_shots(
|
||
params,
|
||
solutions,
|
||
noise_amplitude,
|
||
num_freq,
|
||
)
|
||
|
||
fig = make_figure(extra_title, figsize=(10, 6))
|
||
fig.clear()
|
||
ax = fig.subplots()
|
||
|
||
process_and_plot_results(params, ax, freq, average_power_spectrum, σ_power_spectrum)
|
||
ax.text(
|
||
0.01,
|
||
0.95,
|
||
f"""$Ω/2π = {params.Ω}$MHz
|
||
$η/2π = {params.η}MHz$
|
||
$g_0 = {params.g_0}Ω$
|
||
$N = {params.N}$
|
||
noise = ${noise_amplitude * 2}$
|
||
$η_A = {η_factor}η$
|
||
EOM range = {eom_ranges[0]:.2f}Ω to {eom_ranges[1]:.2f}Ω
|
||
EOM steps = {eom_steps}
|
||
excitation time = {excitation_lifetimes} lifetimes
|
||
measurement time = {measurement_lifetimes} lifetimes
|
||
on mode = {laser_on_mode}
|
||
laser detuning = {laser_detuning}
|
||
num freq = {num_freq}
|
||
total time = {(excitation_lifetimes + measurement_lifetimes) * eom_steps / (params.η * 1e6)}s""",
|
||
transform=ax.transAxes,
|
||
ha="left",
|
||
va="top",
|
||
size=10,
|
||
bbox=dict(boxstyle="round", facecolor="wheat", alpha=0.5),
|
||
)
|
||
ax.set_title(extra_title)
|
||
|
||
fig.tight_layout()
|
||
return fig
|
||
|
||
|
||
# %% save
|
||
if __name__ == "__main__":
|
||
fig = generate_data(
|
||
g_0=0.2,
|
||
η_factor=5,
|
||
noise_amplitude=0.3,
|
||
N=5,
|
||
eom_ranges=(0.7, 0.9),
|
||
eom_steps=100,
|
||
laser_detuning=0,
|
||
laser_on_mode=0,
|
||
excitation_lifetimes=2,
|
||
measurement_lifetimes=4,
|
||
num_freq=4,
|
||
extra_title="Laser on A site",
|
||
)
|
||
|
||
fig = generate_data(
|
||
g_0=0.2,
|
||
η_factor=5,
|
||
noise_amplitude=0.3,
|
||
N=5,
|
||
eom_ranges=(1.2, 1.3),
|
||
eom_steps=100,
|
||
laser_detuning=0,
|
||
laser_on_mode=-1,
|
||
excitation_lifetimes=2,
|
||
measurement_lifetimes=4,
|
||
num_freq=1,
|
||
extra_title="Laser on Bath Mode",
|
||
)
|