mirror of
https://github.com/vale981/fibre_walk_project_code
synced 2025-03-04 09:21:38 -05:00
clean up calibration plot code
This commit is contained in:
parent
1f45ebb196
commit
79b42021a5
5 changed files with 365 additions and 255 deletions
|
@ -1,89 +1,62 @@
|
|||
"""A demonstration of the ringdown spectroscopy protocol."""
|
||||
|
||||
from rabifun.system import *
|
||||
from rabifun.plots import *
|
||||
from rabifun.utilities import *
|
||||
from ringfit.utils import WelfordAggregator
|
||||
from rabifun.analysis import *
|
||||
from ringfit.data import ScanData
|
||||
import functools
|
||||
import multiprocessing
|
||||
import copy
|
||||
from scipy.ndimage import rotate
|
||||
|
||||
# %% interactive
|
||||
|
||||
|
||||
class WelfordAggregator:
|
||||
"""A class to aggregate values using the Welford algorithm.
|
||||
def solve_shot(
|
||||
params: Params, t: np.ndarray, t_before: np.ndarray, t_after: np.ndarray
|
||||
):
|
||||
"""A worker function to solve for the time evolution in separate processes.
|
||||
|
||||
The Welford algorithm is an online algorithm to calculate the mean
|
||||
and variance of a series of values.
|
||||
|
||||
The aggregator keeps track of the number of samples the mean and
|
||||
the variance. Aggregation of identical values is prevented by
|
||||
checking the sample index. Tracking can be disabled by setting
|
||||
the initial index to ``None``.
|
||||
|
||||
See also the `Wikipedia article
|
||||
<https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm>`_.
|
||||
|
||||
:param first_value: The first value to aggregate.
|
||||
:param params: The parameters of the system.
|
||||
:param t: The time axis.
|
||||
:param t_before: The time axis before the EOM is switched off.
|
||||
:param t_after: The time axis after the EOM is switched off.
|
||||
"""
|
||||
|
||||
__slots__ = ["n", "mean", "_m_2"]
|
||||
|
||||
def __init__(self, first_value: np.ndarray):
|
||||
self.n = 1
|
||||
self.mean = first_value
|
||||
self._m_2 = np.zeros_like(first_value)
|
||||
|
||||
def update(self, new_value: np.ndarray):
|
||||
"""Updates the aggregator with a new value."""
|
||||
|
||||
self.n += 1
|
||||
delta = new_value - self.mean
|
||||
self.mean += delta / self.n
|
||||
delta2 = new_value - self.mean
|
||||
self._m_2 += np.abs(delta) * np.abs(delta2)
|
||||
|
||||
@property
|
||||
def sample_variance(self) -> np.ndarray:
|
||||
"""
|
||||
The empirical sample variance. (:math:`\sqrt{N-1}`
|
||||
normalization.)
|
||||
"""
|
||||
|
||||
if self.n == 1:
|
||||
return np.zeros_like(self.mean)
|
||||
|
||||
return self._m_2 / (self.n - 1)
|
||||
|
||||
@property
|
||||
def ensemble_variance(self) -> np.ndarray:
|
||||
"""The ensemble variance."""
|
||||
return self.sample_variance / self.n
|
||||
|
||||
@property
|
||||
def ensemble_std(self) -> np.ndarray:
|
||||
"""The ensemble standard deviation."""
|
||||
return np.sqrt(self.ensemble_variance)
|
||||
|
||||
|
||||
def solve_shot(t, params, t_before, t_after):
|
||||
solution = solve(t, params)
|
||||
amps = solution.y[::, len(t_before) - 1 :]
|
||||
|
||||
return t_after, amps
|
||||
|
||||
|
||||
def make_shots(params, total_lifetimes, eom_range, eom_steps, num_freq):
|
||||
def make_shots(
|
||||
params: Params,
|
||||
total_lifetimes: float,
|
||||
eom_range: tuple[float, float],
|
||||
eom_steps: int,
|
||||
num_freq: int = 1,
|
||||
):
|
||||
"""Generate a series of shots with varying EOM frequencies.
|
||||
|
||||
The implementation here slightly varies the off time of the laser
|
||||
so as to introduce some random relative phases of the modes.
|
||||
|
||||
:param params: The parameters of the system.
|
||||
:param total_lifetimes: The total time of the experiment in
|
||||
lifetimes.
|
||||
:param eom_range: The range of EOM frequencies in units of
|
||||
:any:`params.Ω`.
|
||||
:param eom_steps: The number of steps in the EOM frequency range.
|
||||
:param num_freq: The number of frequencies to drive. If a number
|
||||
greater than 1 is given, the EOM will be driven at multiple
|
||||
frequencies where the highest frequency is the base frequency
|
||||
plus an consecutive integer multiples of :any:`params.Ω`.
|
||||
"""
|
||||
|
||||
solutions = []
|
||||
|
||||
analyze_time = params.lifetimes(total_lifetimes) - params.laser_off_time
|
||||
t_after = time_axis(params, total_time=analyze_time, resolution=0.01)
|
||||
|
||||
pool = multiprocessing.Pool()
|
||||
|
||||
shot_params = []
|
||||
|
||||
rng = np.random.default_rng(seed=0)
|
||||
off_time = params.laser_off_time or 0
|
||||
analyze_time = params.lifetimes(total_lifetimes) - off_time
|
||||
t_after = time_axis(params, total_time=analyze_time, resolution=0.01)
|
||||
|
||||
for step in range(eom_steps):
|
||||
base = params.Ω * (
|
||||
|
@ -97,43 +70,59 @@ def make_shots(params, total_lifetimes, eom_range, eom_steps, num_freq):
|
|||
)
|
||||
current_params.drive_phases = rng.uniform(0, 2 * np.pi, size=num_freq)
|
||||
|
||||
off_time = rng.normal(params.laser_off_time, 0.1 * params.laser_off_time)
|
||||
off_time = rng.normal(off_time, 0.1 * params.laser_off_time)
|
||||
|
||||
params.laser_off_time
|
||||
current_params.laser_off_time = off_time
|
||||
current_params.laser_off_time = None # off_time
|
||||
current_params.drive_off_time = off_time
|
||||
current_params.total_lifetimes = (off_time + analyze_time) / params.lifetimes(1)
|
||||
|
||||
t_before = time_axis(params, total_time=off_time, resolution=0.01)
|
||||
t = np.concatenate([t_before[:-1], t_after + t_before[-1]])
|
||||
shot_params.append((current_params, t, t_before, t_after))
|
||||
|
||||
shot_params.append((t, current_params, t_before, t_after))
|
||||
|
||||
pool = multiprocessing.Pool()
|
||||
solutions = pool.starmap(solve_shot, shot_params)
|
||||
return solutions
|
||||
|
||||
|
||||
def process_shots(solutions, noise_amplitude, params):
|
||||
def process_shots(
|
||||
params: Params,
|
||||
solutions: list[tuple[np.ndarray, np.ndarray]],
|
||||
noise_amplitude: float,
|
||||
num_freq: int,
|
||||
):
|
||||
"""
|
||||
Calculates the normalized average Fourier power spectrum of a
|
||||
series of experimental (simulated) shots.
|
||||
|
||||
:param params: The parameters of the system.
|
||||
:param solutions: A list of solutions to process returned by
|
||||
:any:`solve_shot`.
|
||||
:param noise_amplitude: The amplitude of the noise to add to the
|
||||
signal.
|
||||
|
||||
The amplitude is normalized by 2/η which is roughly the steady
|
||||
state signal amplitude if a bath mode is excited resonantly by
|
||||
a unit-strength input.
|
||||
|
||||
:param num_freq: The number of frequencies to drive. See
|
||||
:any:`make_shots` for details.
|
||||
"""
|
||||
|
||||
rng = np.random.default_rng(seed=0)
|
||||
|
||||
# let us get a measure calibrate the noise strength
|
||||
signals = []
|
||||
for t, amps in solutions:
|
||||
signal = output_signal(t, amps, params)
|
||||
signals.append((t, signal))
|
||||
|
||||
noise_amplitude *= 2 * 2 * np.pi / params.η
|
||||
noise_amplitude /= params.η * np.pi
|
||||
|
||||
aggregate = None
|
||||
for t, signal in signals:
|
||||
for t, amps in solutions:
|
||||
signal = output_signal(t, amps, params)
|
||||
signal += rng.normal(scale=noise_amplitude, size=len(signal))
|
||||
window = (0, t[-1])
|
||||
|
||||
freq, fft = fourier_transform(
|
||||
t,
|
||||
signal,
|
||||
low_cutoff=0.1 * params.Ω,
|
||||
high_cutoff=params.Ω * 5,
|
||||
low_cutoff=0.3 * params.Ω,
|
||||
high_cutoff=params.Ω * (1 + num_freq),
|
||||
window=window,
|
||||
)
|
||||
|
||||
|
@ -145,87 +134,128 @@ def process_shots(solutions, noise_amplitude, params):
|
|||
else:
|
||||
aggregate.update(power)
|
||||
|
||||
assert aggregate is not None # appease pyright
|
||||
|
||||
max_power = np.max(aggregate.mean)
|
||||
return (freq, aggregate.mean / max_power, aggregate.ensemble_std / max_power)
|
||||
|
||||
|
||||
def plot_power_spectrum(
|
||||
ax_spectrum, freq, average_power_spectrum, σ_power_spectrum, params, annotate=True
|
||||
def process_and_plot_results(
|
||||
params: Params,
|
||||
ax: plt.Axes,
|
||||
freq: np.ndarray,
|
||||
average_power_spectrum: np.ndarray,
|
||||
σ_power_spectrum: np.ndarray,
|
||||
annotate: bool = True,
|
||||
):
|
||||
# ax_spectrum.plot(freq, average_power_spectrum)
|
||||
runtime = RuntimeParams(params)
|
||||
"""
|
||||
Fits the ringdown spectrum and plots the results.
|
||||
|
||||
:param params: The parameters of the system.
|
||||
:param ax: The axis to plot on.
|
||||
:param freq: The frequency array.
|
||||
:param average_power_spectrum: The average power spectrum obtained from :any:`process_shots`.
|
||||
:param σ_power_spectrum: The standard deviation of the power
|
||||
spectrum.
|
||||
:param annotate: Whether to annotate the plot with peak and mode positions.
|
||||
"""
|
||||
|
||||
ringdown_params = RingdownParams(
|
||||
fω_shift=params.measurement_detuning,
|
||||
mode_window=(4, 4),
|
||||
mode_window=(params.N, params.N),
|
||||
fΩ_guess=params.Ω,
|
||||
fδ_guess=params.Ω * params.δ,
|
||||
η_guess=0.5,
|
||||
absolute_low_cutoff=0.1 * params.Ω,
|
||||
absolute_low_cutoff=0.3 * params.Ω,
|
||||
)
|
||||
|
||||
peak_info = find_peaks(
|
||||
freq, average_power_spectrum, ringdown_params, prominence=0.05, height=0.1
|
||||
freq,
|
||||
average_power_spectrum,
|
||||
ringdown_params,
|
||||
prominence=0.05,
|
||||
height=0.1,
|
||||
σ_power=σ_power_spectrum,
|
||||
)
|
||||
|
||||
peak_info, lm_result = refine_peaks(
|
||||
peak_info, ringdown_params, height_cutoff=0.05, σ=σ_power_spectrum
|
||||
)
|
||||
peak_info = refine_peaks(peak_info, ringdown_params, height_cutoff=0.05)
|
||||
|
||||
peak_info.power = average_power_spectrum
|
||||
plot_spectrum_and_peak_info(
|
||||
ax_spectrum, peak_info, ringdown_params, annotate=annotate
|
||||
)
|
||||
if lm_result is not None:
|
||||
# print(lm_result.fit_report())
|
||||
plot_spectrum_and_peak_info(ax, peak_info, annotate=annotate)
|
||||
|
||||
if peak_info.lm_result is not None:
|
||||
fine_freq = np.linspace(freq.min(), freq.max(), 5000)
|
||||
fine_fit = lm_result.eval(ω=fine_freq)
|
||||
ax_spectrum.plot(fine_freq, fine_fit, color="red")
|
||||
ax_spectrum.set_ylim(-0.1, max(1, fine_fit.max() * 1.1))
|
||||
fine_fit = peak_info.lm_result.eval(ω=fine_freq)
|
||||
ax.plot(fine_freq, fine_fit - peak_info.noise_floor, color="C3", zorder=-100)
|
||||
ax.set_ylim(-0.1, max(1, fine_fit.max() * 1.1))
|
||||
|
||||
print(runtime.Ωs.real / (2 * np.pi))
|
||||
ax.set_xlabel("Frequency (MHz)")
|
||||
|
||||
for i, peak_freq in enumerate(runtime.Ωs):
|
||||
pos = np.abs(
|
||||
params.measurement_detuning
|
||||
- peak_freq.real / (2 * np.pi)
|
||||
+ params.δ * params.Ω
|
||||
+ params.laser_detuning,
|
||||
)
|
||||
|
||||
ax_spectrum.axvline(
|
||||
pos,
|
||||
color="black",
|
||||
alpha=0.5,
|
||||
linestyle="--",
|
||||
zorder=-100,
|
||||
)
|
||||
|
||||
ax_spectrum.axvspan(
|
||||
pos - peak_freq.imag / (2 * np.pi),
|
||||
pos + peak_freq.imag / (2 * np.pi),
|
||||
color="black",
|
||||
alpha=0.05,
|
||||
linestyle="--",
|
||||
zorder=-100,
|
||||
)
|
||||
if annotate:
|
||||
annotate_ringodown_mode_positions(params, ax)
|
||||
|
||||
|
||||
def generate_data(
|
||||
Ω=13,
|
||||
η=0.2,
|
||||
g_0=0.5,
|
||||
η_factor=5,
|
||||
noise_amplitude=0.3,
|
||||
laser_detuning=0,
|
||||
laser_on_mode=0,
|
||||
N=10,
|
||||
eom_ranges=(0.5, 2.5),
|
||||
eom_steps=20,
|
||||
small_loop_detuning=0,
|
||||
excitation_lifetimes=2,
|
||||
measurement_lifetimes=4,
|
||||
num_freq=3,
|
||||
extra_title="",
|
||||
):
|
||||
η = 0.2
|
||||
Ω = 13
|
||||
"""Simulate and plot the ringdown spectroscopy protocol.
|
||||
|
||||
The idea is to have the laser on ``laser_on_mode`` and to sweep
|
||||
the EOM frequency over a range of values given in ``eom_ranges``
|
||||
in ``eom_steps`` steps. For each step, the laser and EOM are
|
||||
inputting into the system for a time given by
|
||||
``excitation_lifetimes``. Then, the ringdown signal is collected
|
||||
for a time given by ``measurement_lifetimes``. (Lifetime units
|
||||
are given by ``η``.) The resulting power spectra are averaged and
|
||||
then fitted.
|
||||
|
||||
:param Ω: The FSR of the system.
|
||||
:param η: The decay rate of the system.
|
||||
:param g_0: The coupling strength of the system in units of
|
||||
:any:`Ω`. Note that the effective coupling strength between
|
||||
the ``A`` site and the bath modes is reduced by a factor of
|
||||
:math:`\sqrt{2}`.
|
||||
|
||||
:param η_factor: The factor by which the decay rate of the A site
|
||||
is greater.
|
||||
:param noise_amplitude: The amplitude of the noise to add to the
|
||||
signal. See :any:`process_shots` for details.
|
||||
:param laser_detuning: The detuning of the laser from the the mode
|
||||
it is exciting.
|
||||
:param laser_on_mode: The mode that the laser is exciting.
|
||||
:param N: The number of bath modes.
|
||||
:param eom_ranges: The range of EOM frequencies in units of
|
||||
:any:`Ω`.
|
||||
:param eom_steps: The number of steps in the EOM frequency range.
|
||||
:param excitation_lifetimes: The time the EOM is driving the
|
||||
system.
|
||||
:param measurement_lifetimes: The time the system is left to ring
|
||||
down.
|
||||
|
||||
Note that the laser is not turned off during the ringdown.
|
||||
|
||||
:param num_freq: The number of frequencies to drive. See
|
||||
:any:`make_shots` for details.
|
||||
:param extra_title: A string to add to the title of the plot.
|
||||
|
||||
:returns: The figure containing the plot.
|
||||
"""
|
||||
|
||||
final_laser_detuning = laser_detuning + (
|
||||
0 if laser_on_mode == 0 else (laser_on_mode - 1 / 4) * Ω
|
||||
)
|
||||
|
||||
params = Params(
|
||||
η=η,
|
||||
|
@ -233,8 +263,8 @@ def generate_data(
|
|||
Ω=Ω,
|
||||
δ=1 / 4,
|
||||
ω_c=0.1,
|
||||
g_0=g_0,
|
||||
laser_detuning=laser_detuning,
|
||||
g_0=g_0 * num_freq, # as it would be normalized otherwise
|
||||
laser_detuning=final_laser_detuning,
|
||||
N=N,
|
||||
N_couplings=N,
|
||||
measurement_detuning=0,
|
||||
|
@ -242,8 +272,8 @@ def generate_data(
|
|||
rwa=False,
|
||||
flat_energies=False,
|
||||
correct_lamb_shift=0,
|
||||
laser_off_time=0,
|
||||
small_loop_detuning=small_loop_detuning,
|
||||
laser_off_time=None,
|
||||
small_loop_detuning=0,
|
||||
drive_override=(np.array([]), np.array([])),
|
||||
)
|
||||
|
||||
|
@ -258,84 +288,42 @@ def generate_data(
|
|||
num_freq,
|
||||
)
|
||||
|
||||
(sol_on_res) = make_shots(
|
||||
params,
|
||||
excitation_lifetimes + measurement_lifetimes,
|
||||
((1 + params.δ), (1 + params.δ)),
|
||||
1,
|
||||
num_freq,
|
||||
)
|
||||
|
||||
(sol_on_res_bath) = make_shots(
|
||||
params,
|
||||
excitation_lifetimes + measurement_lifetimes,
|
||||
((1 + params.δ * 1.1), (1 + params.δ * 1.1)),
|
||||
1,
|
||||
num_freq,
|
||||
)
|
||||
|
||||
freq, average_power_spectrum, σ_power_spectrum = process_shots(
|
||||
solutions, noise_amplitude, params
|
||||
)
|
||||
_, spectrum_on_resonance, σ_power_spectrum_on_resonance = process_shots(
|
||||
sol_on_res, noise_amplitude, params
|
||||
)
|
||||
_, spectrum_on_resonance_bath, σ_power_spectrum_on_resonance_bath = process_shots(
|
||||
sol_on_res_bath, noise_amplitude, params
|
||||
params,
|
||||
solutions,
|
||||
noise_amplitude,
|
||||
num_freq,
|
||||
)
|
||||
|
||||
fig = make_figure()
|
||||
fig = make_figure(extra_title, figsize=(10, 6))
|
||||
fig.clear()
|
||||
ax = fig.subplots()
|
||||
|
||||
fig.suptitle(f"""
|
||||
Spectroscopy Protocol V2
|
||||
|
||||
Ω/2π = {params.Ω}MHz, η/2π = {params.η}MHz, g_0 = {params.g_0}Ω, N = {params.N}
|
||||
noise amplitude = {noise_amplitude} * 2/η, η_A = {η_factor} x η, EOM stepped from {eom_ranges[0]:.2f}Ω to {eom_ranges[1]:.2f}Ω in {eom_steps} steps
|
||||
total time = {(excitation_lifetimes + measurement_lifetimes) * eom_steps / (params.η * 1e6)}s
|
||||
""")
|
||||
ax_multi, ax_single, ax_single_bath = fig.subplot_mosaic("AA\nBC").values()
|
||||
|
||||
plot_power_spectrum(
|
||||
ax_multi, freq, average_power_spectrum, σ_power_spectrum, params
|
||||
process_and_plot_results(params, ax, freq, average_power_spectrum, σ_power_spectrum)
|
||||
ax.text(
|
||||
0.01,
|
||||
0.95,
|
||||
f"""$Ω/2π = {params.Ω}$MHz
|
||||
$η/2π = {params.η}MHz$
|
||||
$g_0 = {params.g_0}Ω$
|
||||
$N = {params.N}$
|
||||
noise = ${noise_amplitude * 2}$
|
||||
$η_A = {η_factor}η$
|
||||
EOM range = {eom_ranges[0]:.2f}Ω to {eom_ranges[1]:.2f}Ω
|
||||
EOM steps = {eom_steps}
|
||||
excitation time = {excitation_lifetimes} lifetimes
|
||||
measurement time = {measurement_lifetimes} lifetimes
|
||||
on mode = {laser_on_mode}
|
||||
laser detuning = {laser_detuning}
|
||||
num freq = {num_freq}
|
||||
total time = {(excitation_lifetimes + measurement_lifetimes) * eom_steps / (params.η * 1e6)}s""",
|
||||
transform=ax.transAxes,
|
||||
ha="left",
|
||||
va="top",
|
||||
size=10,
|
||||
bbox=dict(boxstyle="round", facecolor="wheat", alpha=0.5),
|
||||
)
|
||||
plot_power_spectrum(
|
||||
ax_single,
|
||||
freq,
|
||||
spectrum_on_resonance,
|
||||
σ_power_spectrum_on_resonance,
|
||||
params,
|
||||
annotate=False,
|
||||
)
|
||||
plot_power_spectrum(
|
||||
ax_single_bath,
|
||||
freq,
|
||||
spectrum_on_resonance_bath,
|
||||
σ_power_spectrum_on_resonance_bath,
|
||||
params,
|
||||
annotate=False,
|
||||
)
|
||||
|
||||
runtime = RuntimeParams(params)
|
||||
for ax in [ax_multi, ax_single, ax_single_bath]:
|
||||
ax.set_xlabel("Frequency (MHz)")
|
||||
ax.sharex(ax_multi)
|
||||
ax.sharey(ax_multi)
|
||||
|
||||
ax_ticks = ax.twiny()
|
||||
ax_ticks.sharey(ax)
|
||||
ax_ticks.set_xticks(runtime.ringdown_frequencies)
|
||||
ax_ticks.set_xticklabels(
|
||||
[mode_name(i, params.N) for i in range(2 * params.N + 2)]
|
||||
)
|
||||
ax_ticks.plot(freq, np.zeros_like(freq), alpha=0)
|
||||
ax_ticks.set_xlim(ax.get_xlim())
|
||||
|
||||
ax_multi.set_title("Averaged Power Spectrum")
|
||||
ax_single.set_title("Single-shot, No detuning")
|
||||
ax_single_bath.set_title("Single-shot, EOM 10% detuned")
|
||||
|
||||
# ax_spectrum.set_yscale(yscale)
|
||||
ax.set_title(extra_title)
|
||||
|
||||
fig.tight_layout()
|
||||
return fig
|
||||
|
@ -344,15 +332,31 @@ def generate_data(
|
|||
# %% save
|
||||
if __name__ == "__main__":
|
||||
fig = generate_data(
|
||||
g_0=0.5,
|
||||
g_0=0.2,
|
||||
η_factor=5,
|
||||
noise_amplitude=5e-3,
|
||||
noise_amplitude=0.3,
|
||||
N=5,
|
||||
eom_ranges=(0.7, 0.9), # (1.9, 2.1),
|
||||
eom_ranges=(0.7, 0.9),
|
||||
eom_steps=100,
|
||||
small_loop_detuning=0,
|
||||
laser_detuning=0,
|
||||
excitation_lifetimes=1,
|
||||
measurement_lifetimes=3,
|
||||
laser_on_mode=0,
|
||||
excitation_lifetimes=2,
|
||||
measurement_lifetimes=4,
|
||||
num_freq=4,
|
||||
extra_title="Laser on A site",
|
||||
)
|
||||
|
||||
fig = generate_data(
|
||||
g_0=0.2,
|
||||
η_factor=5,
|
||||
noise_amplitude=0.3,
|
||||
N=5,
|
||||
eom_ranges=(1.2, 1.3),
|
||||
eom_steps=100,
|
||||
laser_detuning=0,
|
||||
laser_on_mode=-1,
|
||||
excitation_lifetimes=2,
|
||||
measurement_lifetimes=4,
|
||||
num_freq=1,
|
||||
extra_title="Laser on Bath Mode",
|
||||
)
|
||||
|
|
|
@ -121,7 +121,7 @@ class RingdownPeakData:
|
|||
"""The fft frequency array."""
|
||||
|
||||
power: np.ndarray
|
||||
"""The power spectrum of the fft."""
|
||||
"""The normalized power spectrum of the fft."""
|
||||
|
||||
peaks: np.ndarray
|
||||
"""The indices of the peaks."""
|
||||
|
@ -132,6 +132,9 @@ class RingdownPeakData:
|
|||
peak_info: dict
|
||||
"""The information from :any:`scipy.signal.find_peaks`."""
|
||||
|
||||
σ_power: np.ndarray | None = None
|
||||
"""The standard deviation of the power spectrum."""
|
||||
|
||||
peak_widths: np.ndarray | None = None
|
||||
"""
|
||||
The widths of the peaks.
|
||||
|
@ -146,10 +149,23 @@ class RingdownPeakData:
|
|||
lorentz_params: list | None = None
|
||||
"""The lorentzian fit params to be fed into :any:`lorentzian`."""
|
||||
|
||||
lm_result: lmfit.model.ModelResult | None = None
|
||||
"""The fit result from :any:`lmfit`."""
|
||||
|
||||
noise_floor: float = 0
|
||||
"""The noise floor of the spectrum."""
|
||||
|
||||
@property
|
||||
def is_refined(self) -> bool:
|
||||
"""Whether the peaks have been refined with :any:`refine_peaks`."""
|
||||
return self.peak_widths is not None
|
||||
return self.lm_result is not None
|
||||
|
||||
def __post_init__(self):
|
||||
norm = np.max(self.power)
|
||||
|
||||
self.power /= norm
|
||||
if self.σ_power is not None:
|
||||
self.σ_power /= norm
|
||||
|
||||
|
||||
def find_peaks(
|
||||
|
@ -158,6 +174,7 @@ def find_peaks(
|
|||
params: RingdownParams,
|
||||
prominence: float = 0.005,
|
||||
height: float = 0.1,
|
||||
σ_power: np.ndarray | None = None,
|
||||
) -> RingdownPeakData:
|
||||
"""Determine the peaks of the power spectrum of the
|
||||
ringdown data.
|
||||
|
@ -168,7 +185,7 @@ def find_peaks(
|
|||
:param prominence: The prominence (vertical distance of peak from
|
||||
surrounding valleys) of the peaks.
|
||||
:param height: The minimum height of the peaks.
|
||||
|
||||
:param σ_power: The standard deviation of the power spectrum.
|
||||
"""
|
||||
|
||||
freq_step = freq[1] - freq[0]
|
||||
|
@ -195,6 +212,7 @@ def find_peaks(
|
|||
peak_freqs=peak_freqs,
|
||||
peak_info=peak_info,
|
||||
power=power_spectrum,
|
||||
σ_power=σ_power,
|
||||
)
|
||||
|
||||
|
||||
|
@ -210,6 +228,11 @@ def filter_peaks(
|
|||
to_be_deleted: list = [],
|
||||
):
|
||||
deleted_peaks = []
|
||||
if not peaks.is_refined:
|
||||
return peaks
|
||||
|
||||
peaks = dataclasses.replace(peaks)
|
||||
|
||||
for i in reversed(range(len(peaks.peak_freqs))):
|
||||
A, ω0, γ = peaks.lorentz_params[i]
|
||||
Δω0, Δγ = peaks.Δpeak_freqs[i], peaks.Δpeak_widths[i]
|
||||
|
@ -221,11 +244,11 @@ def filter_peaks(
|
|||
or A > 5
|
||||
or Δγ > uncertainty_threshold * params.fΩ_guess
|
||||
):
|
||||
np.delete(peaks.peaks, i)
|
||||
np.delete(peaks.peak_freqs, i)
|
||||
np.delete(peaks.Δpeak_freqs, i)
|
||||
np.delete(peaks.peak_widths, i)
|
||||
np.delete(peaks.Δpeak_widths, i)
|
||||
peaks.peaks = np.delete(peaks.peaks, i)
|
||||
peaks.peak_freqs = np.delete(peaks.peak_freqs, i)
|
||||
peaks.Δpeak_freqs = np.delete(peaks.Δpeak_freqs, i)
|
||||
peaks.peak_widths = np.delete(peaks.peak_widths, i)
|
||||
peaks.Δpeak_widths = np.delete(peaks.Δpeak_widths, i)
|
||||
|
||||
del peaks.lorentz_params[i]
|
||||
deleted_peaks.append(i)
|
||||
|
@ -243,10 +266,14 @@ def refine_peaks(
|
|||
params: RingdownParams,
|
||||
uncertainty_threshold: float = 0.2,
|
||||
height_cutoff: float = 0.1,
|
||||
σ: np.ndarray | None = None,
|
||||
):
|
||||
) -> RingdownPeakData:
|
||||
"""
|
||||
Refine the peak positions and frequencies by fitting Lorentzians.
|
||||
Refine the peak positions and frequencies by fitting a sum of
|
||||
Lorentzians. The peaks are filtered according to the
|
||||
``height_cutoff``, ``uncertainty_threshold`` and other criteria
|
||||
and the fit repeated until nothing changes. The results are
|
||||
stored in a copy of ``peaks``, among them the last successful
|
||||
:any:`lmfit` fit result.
|
||||
|
||||
:param peaks: The peak data.
|
||||
:param params: The ringdown parameters.
|
||||
|
@ -256,7 +283,7 @@ def refine_peaks(
|
|||
"""
|
||||
|
||||
if len(peaks.peaks) == 0:
|
||||
return peaks, None
|
||||
return peaks
|
||||
|
||||
peaks = dataclasses.replace(peaks)
|
||||
freqs = peaks.freq
|
||||
|
@ -268,8 +295,7 @@ def refine_peaks(
|
|||
|
||||
scaled_power = power
|
||||
|
||||
if σ is None:
|
||||
σ = np.zeros_like(power)
|
||||
σ = np.zeros_like(power) if peaks.σ_power is None else peaks.σ_power
|
||||
|
||||
for i, (A, ω0) in enumerate(zip(peaks.peak_info["peak_heights"], peak_freqs)):
|
||||
model = lmfit.Model(lorentzian, prefix=f"peak_{i}_")
|
||||
|
@ -319,7 +345,7 @@ def refine_peaks(
|
|||
|
||||
peaks.lorentz_params = [None] * len(peaks.peak_freqs)
|
||||
|
||||
for i in reversed(range(len(peaks.peak_freqs))):
|
||||
for i in range(len(peaks.peak_freqs)):
|
||||
peak_prefix = f"peak_{i}_"
|
||||
|
||||
A, ω0, γ = (
|
||||
|
@ -342,13 +368,16 @@ def refine_peaks(
|
|||
|
||||
peaks.lorentz_params[i] = A, ω0, γ
|
||||
|
||||
peaks.lm_result = lm_result
|
||||
peaks.noise_floor = lm_result.best_values["offset"]
|
||||
|
||||
before_filter = len(peaks.peaks)
|
||||
peaks = filter_peaks(peaks, params, uncertainty_threshold, height_cutoff)
|
||||
|
||||
if len(peaks.peaks) < before_filter:
|
||||
return refine_peaks(peaks, params, uncertainty_threshold, height_cutoff)
|
||||
|
||||
return peaks, lm_result
|
||||
return peaks
|
||||
|
||||
|
||||
class StepType(Enum):
|
||||
|
|
|
@ -213,53 +213,43 @@ def plot_rwa_vs_real_amplitudes(ax, solution_no_rwa, solution_rwa, params, **kwa
|
|||
return no_rwa_lines, rwa_lines
|
||||
|
||||
|
||||
def plot_spectrum_and_peak_info(
|
||||
ax, peaks: RingdownPeakData, params: RingdownParams, annotate=False
|
||||
):
|
||||
def plot_spectrum_and_peak_info(ax, peaks: RingdownPeakData, annotate=False):
|
||||
"""Plot the fft spectrum with peaks.
|
||||
|
||||
:param ax: The axis to plot on.
|
||||
:param peaks: The peak data.
|
||||
:param params: The ringdown parameters.
|
||||
:param annotate: Whether to annotate the peaks.
|
||||
"""
|
||||
|
||||
ax.clear()
|
||||
ax.plot(
|
||||
peaks.freq,
|
||||
peaks.power,
|
||||
peaks.power - peaks.noise_floor,
|
||||
label="FFT Power",
|
||||
color="C0",
|
||||
linewidth=0.5,
|
||||
linewidth=0.1,
|
||||
marker="o",
|
||||
markersize=2,
|
||||
markersize=3,
|
||||
)
|
||||
|
||||
fine_freq = np.linspace(peaks.freq[0], peaks.freq[-1], 1000)
|
||||
if annotate:
|
||||
for i, (freq, Δfreq, lorentz) in enumerate(
|
||||
zip(peaks.peak_freqs, peaks.Δpeak_freqs, peaks.lorentz_params)
|
||||
):
|
||||
# ax.plot(
|
||||
# freq,
|
||||
# max(lorentz[0], 1),
|
||||
# "x",
|
||||
# label="Peaks",
|
||||
# color="C2",
|
||||
# )
|
||||
|
||||
roundfreq, rounderr = scientific_round(freq, Δfreq)
|
||||
|
||||
t = ax.text(
|
||||
freq,
|
||||
ax.get_ylim()[1] * 0.9,
|
||||
lorentz[0] * 1.1,
|
||||
rf"{i} (${roundfreq}\pm {rounderr}$)",
|
||||
fontsize=20,
|
||||
)
|
||||
t.set_bbox(dict(facecolor="white", alpha=1, edgecolor="white"))
|
||||
t.set_bbox(dict(facecolor="white", alpha=0.8, edgecolor="white"))
|
||||
|
||||
ax.plot(
|
||||
peaks.freq,
|
||||
lorentzian(peaks.freq, *lorentz),
|
||||
fine_freq,
|
||||
lorentzian(fine_freq, *lorentz),
|
||||
"--",
|
||||
color="C2",
|
||||
alpha=0.5,
|
||||
|
@ -268,12 +258,43 @@ def plot_spectrum_and_peak_info(
|
|||
ax.set_title("FFT Spectrum")
|
||||
ax.set_xlabel("ω [linear]")
|
||||
ax.set_ylabel("Power")
|
||||
ax.axvline(
|
||||
params.fω_shift,
|
||||
color="gray",
|
||||
linestyle="--",
|
||||
zorder=-10,
|
||||
label="Frequency Shift",
|
||||
)
|
||||
ax.set_xlim(peaks.freq[0], peaks.freq[-1])
|
||||
ax.legend()
|
||||
|
||||
|
||||
def annotate_ringodown_mode_positions(params: Params, ax):
|
||||
"""
|
||||
Add y ticks and vertical lines indicating the theoretical
|
||||
frequencies and widths of the modes in that can appear in the
|
||||
ringdown spectrum.
|
||||
|
||||
:param params: The system parameters.
|
||||
:param ax: The pyplot axis to annotate.
|
||||
"""
|
||||
|
||||
runtime = RuntimeParams(params)
|
||||
ax_ticks = ax.twiny()
|
||||
ax_ticks.sharey(ax)
|
||||
ax_ticks.set_xticks(runtime.ringdown_frequencies)
|
||||
ax_ticks.set_xticklabels([mode_name(i, params.N) for i in range(2 * params.N + 2)])
|
||||
ax_ticks.set_xlim(ax.get_xlim())
|
||||
|
||||
for pos, peak_freq in zip(runtime.ringdown_frequencies, runtime.Ωs):
|
||||
ax.axvline(
|
||||
pos,
|
||||
color="black",
|
||||
alpha=0.5,
|
||||
linestyle="--",
|
||||
zorder=-100,
|
||||
)
|
||||
|
||||
ax.axvspan(
|
||||
pos - peak_freq.imag / (2 * np.pi),
|
||||
pos + peak_freq.imag / (2 * np.pi),
|
||||
color="black",
|
||||
alpha=0.05,
|
||||
linestyle="--",
|
||||
zorder=-100,
|
||||
)
|
||||
|
||||
return ax
|
||||
|
|
|
@ -125,7 +125,7 @@ class Params:
|
|||
"""
|
||||
return n / self.Ω
|
||||
|
||||
def lifetimes(self, n: float):
|
||||
def lifetimes(self, n: float) -> float:
|
||||
"""
|
||||
Returns the number of lifetimes of the system that correspond to
|
||||
`n` cycles.
|
||||
|
|
|
@ -46,3 +46,59 @@ def smoothe_signal(
|
|||
|
||||
window = int(window_size / time_step)
|
||||
return uniform_filter1d(signal, window)
|
||||
|
||||
|
||||
class WelfordAggregator:
|
||||
"""A class to aggregate values using the Welford algorithm.
|
||||
|
||||
The Welford algorithm is an online algorithm to calculate the mean
|
||||
and variance of a series of values.
|
||||
|
||||
The aggregator keeps track of the number of samples the mean and
|
||||
the variance. Aggregation of identical values is prevented by
|
||||
checking the sample index. Tracking can be disabled by setting
|
||||
the initial index to ``None``.
|
||||
|
||||
See also the `Wikipedia article
|
||||
<https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm>`_.
|
||||
|
||||
:param first_value: The first value to aggregate.
|
||||
"""
|
||||
|
||||
__slots__ = ["n", "mean", "_m_2"]
|
||||
|
||||
def __init__(self, first_value: np.ndarray):
|
||||
self.n: int = 1
|
||||
self.mean: np.ndarray = first_value
|
||||
self._m_2 = np.zeros_like(first_value)
|
||||
|
||||
def update(self, new_value: np.ndarray):
|
||||
"""Updates the aggregator with a new value."""
|
||||
|
||||
self.n += 1
|
||||
delta = new_value - self.mean
|
||||
self.mean += delta / self.n
|
||||
delta2 = new_value - self.mean
|
||||
self._m_2 += np.abs(delta) * np.abs(delta2)
|
||||
|
||||
@property
|
||||
def sample_variance(self) -> np.ndarray:
|
||||
"""
|
||||
The empirical sample variance. (:math:`\sqrt{N-1}`
|
||||
normalization.)
|
||||
"""
|
||||
|
||||
if self.n == 1:
|
||||
return np.zeros_like(self.mean)
|
||||
|
||||
return self._m_2 / (self.n - 1)
|
||||
|
||||
@property
|
||||
def ensemble_variance(self) -> np.ndarray:
|
||||
"""The ensemble variance."""
|
||||
return self.sample_variance / self.n
|
||||
|
||||
@property
|
||||
def ensemble_std(self) -> np.ndarray:
|
||||
"""The ensemble standard deviation."""
|
||||
return np.sqrt(self.ensemble_variance)
|
||||
|
|
Loading…
Add table
Reference in a new issue