mirror of
https://github.com/vale981/fibre_walk_project_code
synced 2025-03-04 17:31:39 -05:00
212 lines
6.1 KiB
Python
212 lines
6.1 KiB
Python
from ringfit import data
|
||
import matplotlib.pyplot as plt
|
||
from ringfit.data import *
|
||
from ringfit.plotting import *
|
||
from ringfit.fit import *
|
||
from rabifun.analysis import *
|
||
import numpy as np
|
||
import scipy
|
||
from collections import OrderedDict
|
||
import networkx as nx
|
||
from functools import reduce
|
||
|
||
# %% load data
|
||
path = "../../data/22_05_24/ringdown_try_2"
|
||
scan = ScanData.from_dir(path)
|
||
|
||
|
||
# %% Set Window
|
||
window = (0.027751370026589985, 0.027751370026589985 + 0.00001 / 2)
|
||
window = tuple(
|
||
np.array([0.03075207891902308, 0.03075207891902308 + 0.00001]) + 4e-3 - 0.87e-6
|
||
)
|
||
|
||
window = tuple(
|
||
np.array([0.016244684251065847, 0.016248626903395593 + 49e-5]) + 8e-3 - 12e-7
|
||
)
|
||
|
||
# %% Plot Scan
|
||
gc.collect()
|
||
fig = plt.figure("interactive", constrained_layout=True)
|
||
fig.clf()
|
||
(ax, ax2, ax_signal, ax_stft, ax_decay) = fig.subplot_mosaic("AB;CC;DE").values()
|
||
ax.set_title("Fourier Spectrum")
|
||
ax2.set_title("Reconstructed Spectrum")
|
||
for spec_ax in [ax, ax2]:
|
||
spec_ax.set_xlabel("Frequency (MHz)")
|
||
spec_ax.set_ylabel("Power")
|
||
ax3 = ax.twinx()
|
||
ax3.set_ylabel("Phase (rad)")
|
||
|
||
ax_stft.set_xlabel("Time (s)")
|
||
ax_stft.set_ylabel("Frequency (Hz)")
|
||
ax_stft.set_title("Short Time Fourier Transform")
|
||
ax_decay.set_xlabel("Time (s)")
|
||
ax_decay.set_ylabel("Power")
|
||
|
||
# ax_signal.set_xlim(*window)
|
||
plot_scan(scan, ax=ax_signal, smoothe_output=1e-8, linewidth=0.5)
|
||
ax_signal.axvspan(*window, color="red", alpha=0.1)
|
||
ax_signal.set_xlabel("Time (s)")
|
||
ax_signal.set_ylabel("Signal (mV)")
|
||
ax_signal.set_title("Raw Signal (Slighly Smoothened)")
|
||
|
||
# %% Fourier
|
||
freq, fft = fourier_transform(
|
||
scan.time, scan.output, window=window, low_cutoff=0.5e6, high_cutoff=90e6
|
||
)
|
||
|
||
freq *= 1e-6
|
||
|
||
# ax.set_yscale("log")
|
||
ax.plot(freq, np.abs(fft))
|
||
# ax.plot(freq, np.abs(fft.real), linewidth=1, color="red")
|
||
# ax.plot(freq, fft.imag, linewidth=1, color="green")
|
||
|
||
ax3.plot(
|
||
freq[1:],
|
||
np.cumsum(np.angle(fft[1:] / fft[:-1])),
|
||
linestyle="--",
|
||
alpha=0.5,
|
||
linewidth=0.5,
|
||
zorder=10,
|
||
)
|
||
|
||
freq_step = freq[1] - freq[0]
|
||
Ω_guess = 13
|
||
δ_guess = 2.6
|
||
|
||
peaks, peak_info = scipy.signal.find_peaks(
|
||
np.abs(fft) ** 2, distance=δ_guess / 2 / freq_step, prominence=1e-8
|
||
)
|
||
|
||
peak_freq = freq[peaks]
|
||
anglegrad = np.gradient(np.unwrap(np.angle(fft) + np.pi, period=2 * np.pi))
|
||
neg_peaks = peaks[anglegrad[peaks] < 0]
|
||
pos_peaks = peaks[anglegrad[peaks] > 0]
|
||
phase_detuning = np.angle(fft[peaks])
|
||
|
||
ax.plot(peak_freq, np.abs(fft[peaks]), "*")
|
||
|
||
|
||
def extract_peak(index, width, sign, detuning):
|
||
begin = max(index - width, 0)
|
||
return sign * (freq[begin : index + width]) + detuning, np.abs(
|
||
fft[begin : index + width]
|
||
)
|
||
|
||
|
||
mode_freqs = freq[peaks]
|
||
|
||
all_diffs = np.abs((mode_freqs[:, None] - mode_freqs[None, :])[:, :, None] - Ω_guess)
|
||
|
||
all_diffs[all_diffs == 0] = np.inf
|
||
all_diffs[all_diffs > 1] = np.inf
|
||
matches = np.asarray(all_diffs < np.inf).nonzero()
|
||
|
||
pairs = np.array(list(zip(*matches, all_diffs[matches])), dtype=int)
|
||
|
||
relationships = nx.DiGraph()
|
||
for node, peak in enumerate(peaks):
|
||
relationships.add_node(node, freqency=freq[peak])
|
||
|
||
for left, right, relationship, diff in pairs:
|
||
if freq[left] > freq[right]:
|
||
left, right = right, left
|
||
|
||
if (
|
||
not relationships.has_edge(left, right)
|
||
or relationships[left][right]["weight"] > diff * 1e-6
|
||
):
|
||
relationships.add_edge(
|
||
left, right, weight=diff * 1e-6, type=relationship, freqdis=right - left
|
||
)
|
||
|
||
|
||
UG = relationships.to_undirected()
|
||
|
||
# extract subgraphs
|
||
neg, pos, *unmatched = [
|
||
list(sorted(i))
|
||
for i in sorted(list(nx.connected_components(UG)), key=lambda l: -len(l))
|
||
]
|
||
|
||
ax.plot(mode_freqs[neg], np.abs(fft[peaks[neg]]), "x")
|
||
ax.plot(mode_freqs[pos], np.abs(fft[peaks[pos]]), "o")
|
||
|
||
# ax.plot(freq[pos_peaks], np.abs(fft[pos_peaks]), "o")
|
||
|
||
Ω = (np.diff(peak_freq[neg]).mean() + np.diff(peak_freq[pos]).mean()) / 2
|
||
ΔΩ = np.sqrt((np.diff(peak_freq[neg]).var() + np.diff(peak_freq[pos]).var())) / 2
|
||
|
||
|
||
Δ_L = ((mode_freqs[pos] - mode_freqs[neg] - Ω) / 2).mean()
|
||
|
||
|
||
ax2.cla()
|
||
for peak in neg:
|
||
ax2.plot(*extract_peak(peaks[peak], 200, 1, Δ_L + Ω / 2), color="blue")
|
||
for peak in pos:
|
||
ax2.plot(*extract_peak(peaks[peak], 200, -1, Δ_L - Ω / 2), color="blue")
|
||
|
||
hybrid = []
|
||
for peak, sign in zip(np.array(unmatched).flatten(), [1, -1]):
|
||
hybrid.append(sign * mode_freqs[peak] + Δ_L)
|
||
ax2.plot(*extract_peak(peaks[peak], 200, sign, Δ_L), color="green")
|
||
|
||
δ = np.abs(np.diff(hybrid)[0] / 2)
|
||
|
||
fig.suptitle(f"Ω = {Ω:.2f}MHz, ΔΩ = {ΔΩ:.2f}MHz, Δ_L = {Δ_L:.2f}MHz, δ = {δ:.2f}MHz")
|
||
|
||
# %% Windowed Fourier
|
||
windows = np.linspace(window[0], window[0] + (window[-1] - window[0]) * 0.1, 100)
|
||
fiducial = peak_freq[neg[1]]
|
||
size = int(300 * 1e-6 / fiducial / scan.timestep)
|
||
w_fun = scipy.signal.windows.gaussian(size, std=0.1 * size, sym=True)
|
||
# w_fun = scipy.signal.windows.boxcar(size)
|
||
amps = []
|
||
SFT = scipy.signal.ShortTimeFFT(
|
||
w_fun, hop=int(size * 0.1 / 5), fs=1 / scan.timestep, scale_to="magnitude"
|
||
)
|
||
|
||
t = scan.time[(window[1] > scan.time) & (scan.time > window[0])]
|
||
ft = SFT.spectrogram(scan.output[(window[1] > scan.time) & (scan.time > window[0])])
|
||
ft[ft > 1e-2] = 0
|
||
ax_stft.imshow(
|
||
np.log((ft[:, :400])),
|
||
aspect="auto",
|
||
origin="lower",
|
||
cmap="magma",
|
||
extent=SFT.extent(len(t)),
|
||
)
|
||
ax_stft.set_ylim(0, 50 * 1e6)
|
||
ax_stft.set_xlim(
|
||
2.8 * SFT.lower_border_end[0] * SFT.T, SFT.upper_border_begin(len(t))[0] * SFT.T
|
||
)
|
||
|
||
# %% Decay Plot
|
||
index = np.argmin(np.abs(SFT.f - 1e6 * peak_freq[unmatched[0]])) + 1
|
||
ax_stft.axhline(SFT.f[index])
|
||
|
||
hy_mode = np.mean(ft[index - 3 : index + 3, :], axis=0)
|
||
sft_t = SFT.t(len(t))
|
||
|
||
mask = (sft_t > 1 * SFT.lower_border_end[0] * SFT.T) & (sft_t < np.max(sft_t) * 0.1)
|
||
hy_mode = hy_mode[mask]
|
||
sft_t = sft_t[mask]
|
||
|
||
ax_decay.plot(sft_t, hy_mode)
|
||
ax_decay.set_xscale("log")
|
||
# plt.plot(sft_t, 3e-6 * np.exp(-.9e6 * (sft_t - 3*SFT.lower_border_end[0] * SFT.T)))
|
||
|
||
|
||
def model(t, a, τ):
|
||
return a * np.exp(-τ * (t - SFT.lower_border_end[0] * SFT.T))
|
||
|
||
|
||
p, cov = scipy.optimize.curve_fit(model, sft_t, hy_mode, p0=[hy_mode[0], 1e6])
|
||
ax_decay.plot(sft_t, model(sft_t, *p))
|
||
print(p[1] * 1e-6, np.sqrt(np.diag(cov))[1] * 1e-6)
|
||
ax_decay.set_title(f"A Site decay γ = {p[1] * 1e-6:.2f}MHz")
|
||
|
||
fig.savefig("/tmp/screen.png", dpi=500)
|