RESULT: 003 works for one specific dataset, is very ugly

This commit is contained in:
Valentin Boettcher 2024-05-23 16:51:57 -04:00
parent 388fcccfb9
commit 5d46f00475
2 changed files with 150 additions and 86 deletions

View file

@ -11,102 +11,104 @@ import networkx as nx
from functools import reduce
# %% load data
path = "../../data/22_05_24/ringdown_with_hybridized_modes"
path = "../../data/22_05_24/ringdown_try_2"
scan = ScanData.from_dir(path)
# %% Fourier
# window = (0.027751370026589985, 0.027751370026589985 + 0.00001 / 2)
# %% Set Window
window = (0.027751370026589985, 0.027751370026589985 + 0.00001 / 2)
window = tuple(
np.array([0.03075207891902308, 0.03075207891902308 + 0.00001]) - 1e-3 - 0.82e-6
)
freq, fft = fourier_transform(
scan.time, scan.output, window=window, low_cutoff=20e5, high_cutoff=100e6
np.array([0.03075207891902308, 0.03075207891902308 + 0.00001]) + 4e-3 - 0.87e-6
)
window = tuple(
np.array([0.016244684251065847, 0.016248626903395593 + 49e-5]) + 8e-3 - 12e-7
)
# %% plot
# %% Plot Scan
gc.collect()
fig = plt.figure("interactive")
fig = plt.figure("interactive", constrained_layout=True)
fig.clf()
ax, ax2 = fig.subplots(1, 2)
(ax, ax2, ax_signal, ax_stft, ax_decay) = fig.subplot_mosaic("AB;CC;DE").values()
ax.set_title("Fourier Spectrum")
ax2.set_title("Reconstructed Spectrum")
for spec_ax in [ax, ax2]:
spec_ax.set_xlabel("Frequency (MHz)")
spec_ax.set_ylabel("Power")
ax3 = ax.twinx()
ax3.set_ylabel("Phase (rad)")
ax_stft.set_xlabel("Time (s)")
ax_stft.set_ylabel("Frequency (Hz)")
ax_stft.set_title("Short Time Fourier Transform")
ax_decay.set_xlabel("Time (s)")
ax_decay.set_ylabel("Power")
# ax_signal.set_xlim(*window)
plot_scan(scan, ax=ax_signal, smoothe_output=1e-8, linewidth=0.5)
ax_signal.axvspan(*window, color="red", alpha=0.1)
ax_signal.set_xlabel("Time (s)")
ax_signal.set_ylabel("Signal (mV)")
ax_signal.set_title("Raw Signal (Slighly Smoothened)")
# %% Fourier
freq, fft = fourier_transform(
scan.time, scan.output, window=window, low_cutoff=0.5e6, high_cutoff=90e6
)
freq *= 1e-6
# ax.set_yscale("log")
ax.plot(freq, np.abs(fft))
ax3 = ax.twinx()
ax.plot(freq, np.abs(fft.real), linewidth=1, color="red")
# ax.plot(freq, np.abs(fft.real), linewidth=1, color="red")
# ax.plot(freq, fft.imag, linewidth=1, color="green")
# ax3.plot(
# freq,
# np.gradient(np.unwrap(np.angle(fft) + np.pi, period=2 * np.pi)),
# linestyle="--",
# )
ax2.set_xlim(*window)
# plot_scan(scan, ax=ax2, linewidth=0.5, smoothe_output=1e-8)
freq_step = freq[1] - freq[0]
peaks, peak_info = scipy.signal.find_peaks(
np.abs(fft) ** 2, distance=2e6 / freq_step, prominence=3000
ax3.plot(
freq[1:],
np.cumsum(np.angle(fft[1:] / fft[:-1])),
linestyle="--",
alpha=0.5,
linewidth=0.5,
zorder=10,
)
freq_step = freq[1] - freq[0]
Ω_guess = 13
δ_guess = 2.6
peaks, peak_info = scipy.signal.find_peaks(
np.abs(fft) ** 2, distance=δ_guess / 2 / freq_step, prominence=1e-8
)
peak_freq = freq[peaks]
anglegrad = np.gradient(np.unwrap(np.angle(fft) + np.pi, period=2 * np.pi))
neg_peaks = peaks[anglegrad[peaks] < 0]
pos_peaks = peaks[anglegrad[peaks] > 0]
ax.plot(freq[neg_peaks], np.abs(fft[neg_peaks]), "x")
ax.plot(freq[pos_peaks], np.abs(fft[pos_peaks]), "o")
phase_detuning = np.angle(fft[peaks])
# phase_detuning = np.angle(fft[peaks])
ax.plot(peak_freq, np.abs(fft[peaks]), "*")
def extract_peak(index, width, sign=1):
return sign * freq[index - width : index + width], np.abs(
fft[index - width : index + width]
def extract_peak(index, width, sign, detuning):
begin = max(index - width, 0)
return sign * (freq[begin : index + width]) + detuning, np.abs(
fft[begin : index + width]
)
# for peak in neg_peaks:
# ax2.plot(*extract_peak(peak, 10, -1))
# for peak in pos_peaks:
# ax2.plot(*extract_peak(peak, 10, 1))
Ω_guess = 13e6
δ_guess = 2.69e6
N = np.arange(1, 3)
possibilieties = np.concatenate([[2 * δ_guess], N * Ω_guess, N * Ω_guess - δ_guess])
abs(
np.array(
[Ω_guess, 2 * δ_guess, Ω_guess - δ_guess, 2 * Ω_guess, 2 * Ω_guess - δ_guess]
)
)
mode_freqs = freq[peaks]
final_freqs = [mode_freqs[0]]
all_diffs = np.abs(
np.abs(mode_freqs[:, None] - mode_freqs[None, :])[:, :, None]
- possibilieties[None, None, :]
)
all_diffs = np.abs((mode_freqs[:, None] - mode_freqs[None, :])[:, :, None] - Ω_guess)
all_diffs[all_diffs == 0] = np.inf
all_diffs[all_diffs > δ_guess / 2] = np.inf
all_diffs[all_diffs > 1] = np.inf
matches = np.asarray(all_diffs < np.inf).nonzero()
pairs = np.array(list(zip(*matches, all_diffs[matches])), dtype=int)
relationships = nx.DiGraph()
for node, peak in enumerate(peaks):
relationships.add_node(node, freq=freq[peak])
relationships.add_node(node, freqency=freq[peak])
for left, right, relationship, diff in pairs:
if freq[left] > freq[right]:
@ -121,31 +123,90 @@ for left, right, relationship, diff in pairs:
)
pos = {}
for node, peak in enumerate(peaks):
pos[node] = [freq[peak], abs(fft[peak])]
# nx.draw(relationships, pos, with_labels=True)
# nx.draw_networkx_edge_labels(relationships, pos)
UG = relationships.to_undirected()
# %%
cycle = nx.find_cycle(relationships, orientation="ignore")
# extract subgraphs
neg, pos, *unmatched = [
list(sorted(i))
for i in sorted(list(nx.connected_components(UG)), key=lambda l: -len(l))
]
total = 0
for s, t, direction in cycle:
difference = possibilieties[relationships[s][t]["type"]]
if direction == "reverse":
difference *= -1
total += difference
ax.plot(mode_freqs[neg], np.abs(fft[peaks[neg]]), "x")
ax.plot(mode_freqs[pos], np.abs(fft[peaks[pos]]), "o")
# %%
relationships.remove_nodes_from(list(nx.isolates(relationships)))
# ax.plot(freq[pos_peaks], np.abs(fft[pos_peaks]), "o")
spectrum = list(
sorted(nx.all_simple_paths(relationships, 1, 9), key=lambda x: -len(x))
)[0]
Ω = (np.diff(peak_freq[neg]).mean() + np.diff(peak_freq[pos]).mean()) / 2
ΔΩ = np.sqrt((np.diff(peak_freq[neg]).var() + np.diff(peak_freq[pos]).var())) / 2
for s, t in zip(spectrum[:-1], spectrum[1:]):
print(s, relationships[s][t])
for node in spectrum:
plt.plot(freq[node], abs(fft[node]), "*")
Δ_L = ((mode_freqs[pos] - mode_freqs[neg] - Ω) / 2).mean()
ax2.cla()
for peak in neg:
ax2.plot(*extract_peak(peaks[peak], 200, 1, Δ_L + Ω / 2), color="blue")
for peak in pos:
ax2.plot(*extract_peak(peaks[peak], 200, -1, Δ_L - Ω / 2), color="blue")
hybrid = []
for peak, sign in zip(np.array(unmatched).flatten(), [1, -1]):
hybrid.append(sign * mode_freqs[peak] + Δ_L)
ax2.plot(*extract_peak(peaks[peak], 200, sign, Δ_L), color="green")
δ = np.abs(np.diff(hybrid)[0] / 2)
fig.suptitle(f"Ω = {Ω:.2f}MHz, ΔΩ = {ΔΩ:.2f}MHz, Δ_L = {Δ_L:.2f}MHz, δ = {δ:.2f}MHz")
# %% Windowed Fourier
windows = np.linspace(window[0], window[0] + (window[-1] - window[0]) * 0.1, 100)
fiducial = peak_freq[neg[1]]
size = int(300 * 1e-6 / fiducial / scan.timestep)
w_fun = scipy.signal.windows.gaussian(size, std=0.1 * size, sym=True)
# w_fun = scipy.signal.windows.boxcar(size)
amps = []
SFT = scipy.signal.ShortTimeFFT(
w_fun, hop=int(size * 0.1 / 5), fs=1 / scan.timestep, scale_to="magnitude"
)
t = scan.time[(window[1] > scan.time) & (scan.time > window[0])]
ft = SFT.spectrogram(scan.output[(window[1] > scan.time) & (scan.time > window[0])])
ft[ft > 1e-2] = 0
ax_stft.imshow(
np.log((ft[:, :400])),
aspect="auto",
origin="lower",
cmap="magma",
extent=SFT.extent(len(t)),
)
ax_stft.set_ylim(0, 50 * 1e6)
ax_stft.set_xlim(
2.8 * SFT.lower_border_end[0] * SFT.T, SFT.upper_border_begin(len(t))[0] * SFT.T
)
# %% Decay Plot
index = np.argmin(np.abs(SFT.f - 1e6 * peak_freq[unmatched[0]])) + 1
ax_stft.axhline(SFT.f[index])
hy_mode = np.mean(ft[index - 3 : index + 3, :], axis=0)
sft_t = SFT.t(len(t))
mask = (sft_t > 1 * SFT.lower_border_end[0] * SFT.T) & (sft_t < np.max(sft_t) * 0.1)
hy_mode = hy_mode[mask]
sft_t = sft_t[mask]
ax_decay.plot(sft_t, hy_mode)
ax_decay.set_xscale("log")
# plt.plot(sft_t, 3e-6 * np.exp(-.9e6 * (sft_t - 3*SFT.lower_border_end[0] * SFT.T)))
def model(t, a, τ):
return a * np.exp(-τ * (t - SFT.lower_border_end[0] * SFT.T))
p, cov = scipy.optimize.curve_fit(model, sft_t, hy_mode, p0=[hy_mode[0], 1e6])
ax_decay.plot(sft_t, model(sft_t, *p))
print(p[1] * 1e-6, np.sqrt(np.diag(cov))[1] * 1e-6)
ax_decay.set_title(f"A Site decay γ = {p[1] * 1e-6:.2f}MHz")
fig.savefig("/tmp/screen.png", dpi=500)

View file

@ -1,5 +1,6 @@
import numpy as np
import scipy
import os
def fourier_transform(
@ -23,8 +24,10 @@ def fourier_transform(
t = t[mask]
signal = signal[mask] # * scipy.signal.windows.hamming(len(t))
freq = np.fft.rfftfreq(len(t), t[2] - t[1])
fft = np.fft.rfft(signal)
#
freq = scipy.fft.rfftfreq(len(t), t[2] - t[1])
fft = scipy.fft.rfft(signal, norm="forward", workers=os.cpu_count())
mask = (freq > low_cutoff) & (freq < high_cutoff)
return freq[mask], fft[mask]