mirror of
https://github.com/vale981/bachelor_thesis
synced 2025-03-10 04:46:40 -04:00
8.4 KiB
8.4 KiB
Init
Required Modules
import numpy as np
import matplotlib.pyplot as plt
Utilities
%run ../utility.py
%load_ext autoreload
%aimport monte_carlo
Implementation
"""
Implementation of the analytical cross section for q q_bar ->
gamma gamma
Author: Valentin Boettcher <hiro@protagon.space>
"""
import numpy as np
from scipy.constants import alpha
# NOTE: a more elegant solution would be a decorator
def energy_factor(charge, esp):
"""
Calculates the factor common to all other values in this module
Arguments:
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
return charge**4*(alpha/esp)**2/6
def diff_xs(θ, charge, esp):
"""
Calculates the differential cross section as a function of the
azimuth angle θ in units of 1/GeV².
Arguments:
θ -- azimuth angle
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*((np.cos(θ)**2+1)/np.sin(θ)**2)
def diff_xs_cosθ(cosθ, charge, esp):
"""
Calculates the differential cross section as a function of the
cosine of the azimuth angle θ in units of 1/GeV².
Arguments:
cosθ -- cosine of the azimuth angle
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*((cosθ**2+1)/(1-cosθ**2))
def diff_xs_eta(η, charge, esp):
"""
Calculates the differential cross section as a function of the
pseudo rapidity of the photons in units of 1/GeV^2.
Arguments:
η -- pseudo rapidity
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*(2*np.cosh(η)**2 - 1)
def diff_xs_pt(pt, charge, esp):
"""
Calculates the differential cross section as a function of the
transversal impulse of the photons in units of 1/GeV^2.
Arguments:
η -- transversal impulse
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*((esp/pt)**2/2 - 1)
def total_xs_eta(η, charge, esp):
"""
Calculates the total cross section as a function of the pseudo
rapidity of the photons in units of 1/GeV^2. If the rapditiy is
specified as a tuple, it is interpreted as an interval. Otherwise
the interval [-η, η] will be used.
Arguments:
η -- pseudo rapidity (tuple or number)
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementar charge
"""
f = energy_factor(charge, esp)
if not isinstance(η, tuple):
η = (-η, η)
if len(η) != 2:
raise ValueError('Invalid η cut.')
def F(x):
return np.tanh(x) - 2*x
return 2*np.pi*f*(F(η[0]) - F(η[1]))
Calculations
XS qq -> gamma gamma
First, set up the input parameters.
η = 2.5
charge = 1/3
esp = 200 # GeV
Set up the integration and plot intervals.
interval_η = [-η, η]
interval = η_to_θ([-η, η])
interval_cosθ = np.cos(interval)
interval_pt = η_to_pt([0, η], esp/2)
plot_interval = [0.1, np.pi-.1]
Analytical Integratin
And now calculate the cross section in picobarn.
xs_gev = total_xs_eta(η, charge, esp)
xs_pb = gev_to_pb(xs_gev)
print(tex_value(xs_pb, unit=r'\pico\barn', prefix=r'\sigma = ', prec=5))
Compared to sherpa, it's pretty close.
sherpa = 0.0538009
xs_pb/sherpa
0.9998585425137037
I had to set the runcard option EW_SCHEME: alpha0
to use the pure
QED coupling constant.
Numerical Integration
Plot our nice distribution:
plot_points = np.linspace(*plot_interval, 1000)
fig, ax = set_up_plot()
ax.plot(plot_points, gev_to_pb(diff_xs(plot_points, charge=charge, esp=esp)))
ax.set_xlabel(r'$\theta$')
ax.set_ylabel(r'$\frac{d\sigma}{d\Omega}$ [pb]')
ax.axvline(interval[0], color='gray', linestyle='--')
ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
ax.legend()
save_fig(fig, 'diff_xs', 'xs', size=[4, 4])
Define the integrand.
def xs_pb_int(θ):
return gev_to_pb(np.sin(θ)*diff_xs(θ, charge=charge, esp=esp))
Plot the integrand. # TODO: remove duplication
fig, ax = set_up_plot()
ax.plot(plot_points, xs_pb_int(plot_points))
ax.set_xlabel(r'$\theta$')
ax.set_ylabel(r'$\sin(\theta)\cdot\frac{d\sigma}{d\theta}$ [pb]')
ax.axvline(interval[0], color='gray', linestyle='--')
ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
ax.legend()
save_fig(fig, 'xs_integrand', 'xs', size=[4, 4])
Intergrate σ with the mc method.
xs_pb_mc, xs_pb_mc_err = integrate(xs_pb_int, interval, 10000)
xs_pb_mc = xs_pb_mc*np.pi*2
xs_pb_mc, xs_pb_mc_err
(0.05382327328187836, 4.2568280254619665e-05)
print(tex_value(xs_pb_mc, unit=r'\pico\barn', prefix=r'\sigma = ', prec=5))
Sampling and Analysis
Now we monte-carlo sample our distribution.
cosθ_sample = sample(lambda x: diff_xs_cosθ(x, charge, esp), interval_cosθ)
η_sample = sample(lambda x: diff_xs_eta(x, charge, esp), interval_η)
pt_sample = sample(lambda x: diff_xs_pt(x, charge, esp), interval_pt)
Nice! And now draw some histograms.
We define an auxilliary method for convenience.
def draw_histo(points, xlabel, bins=20):
fig, ax = set_up_plot()
ax.hist(points, bins, histtype='step')
ax.set_xlabel(xlabel)
ax.set_xlim([points.min(), points.max()])
return fig, ax
The histogram for cosθ.
fig, _ = draw_histo(cosθ_sample, r'$\cos\theta$')
save_fig(fig, 'histo_cos_theta', 'xs', size=(4,2))
And the histogram for η.
draw_histo(η_sample, r'$\eta$')
save_fig(fig, 'histo_eta', 'xs', size=(4,2))
And the same for pt.
draw_histo(pt_sample, r'$p_{T}$ [GeV]')
save_fig(fig, 'histo_pt', 'xs', size=(4,2))