bachelor_thesis/prog/python/qqgg/monte_carlo.py
hiro98 b47b9886c8 σ scales linearly with the interval lenght
took me way longer to find my error in thinking about this then to fix
the code ^^.
2020-04-02 17:37:31 +02:00

152 lines
5 KiB
Python

"""
Simple monte carlo integration implementation.
Author: Valentin Boettcher <hiro@protagon.space>
"""
import numpy as np
from scipy.optimize import minimize_scalar, root
def _process_interval(interval):
assert len(interval) == 2, 'An interval has two endpoints'
a, b = interval
if b < a:
a, b = b, a
return [a, b]
def integrate(f, interval, point_density=1000, seed=None, **kwargs):
"""Monte-Carlo integrates the functin `f` in an interval.
:param f: function of one variable, kwargs are passed to it
:param tuple interval: a 2-tuple of numbers, specifiying the
integration range
:returns: the integration result
:rtype: float
"""
interval = _process_interval(interval)
if seed:
np.random.seed(seed)
interval_length = (interval[1] - interval[0])
num_points = int(interval_length * point_density)
points = np.random.uniform(interval[0], interval[1], num_points)
sample = f(points, **kwargs)
integral = np.sum(sample)/num_points*interval_length
# the deviation gets multiplied by the square root of the interval
# lenght, because it is the standard deviation of the integral.
deviation = np.std(sample)*np.sqrt(1/(num_points - 1))*interval_length
return integral, deviation
def find_upper_bound(f, interval, **kwargs):
"""Find the upper bound of a function.
:param f: function of one scalar and some kwargs that are passed
on to it
:param interval: interval to look in
:returns: the upper bound of the function
:rtype: float
"""
upper_bound = minimize_scalar(lambda *args: -f(*args, **kwargs),
bounds=interval, method='bounded')
if upper_bound.success:
return -upper_bound.fun
else:
raise RuntimeError('Could not find an upper bound.')
def sample_unweighted(f, interval, upper_bound=None, seed=None,
chunk_size=100, report_efficiency=False, **kwargs):
"""Samples a distribution proportional to f by hit and miss.
Implemented as a generator.
:param f: function of one scalar to sample, should be positive,
superflous kwargs are passed to it
:param interval: the interval to sample from
:param upper_bound: an upper bound to the function, optional
:param seed: the seed for the rng, if not specified, the system
time is used
:param chunk_size: the size of the chunks of random numbers
allocated per unit interval
:yields: random nubers following the distribution of f
:rtype: float
"""
interval = _process_interval(interval)
interval_length = (interval[1] - interval[0])
upper_bound_fn, upper_bound_integral, upper_bound_integral_inverse = None, None, None
# i know....
if not upper_bound:
upper_bound_value = find_upper_bound(f, interval, **kwargs)
def upper_bound_fn(x): return upper_bound_value
def upper_bound_integral(x): return upper_bound_value*x
def upper_bound_integral_inverse(y): return y/upper_bound_value
elif len(upper_bound) == 2:
upper_bound_fn, upper_bound_integral =\
upper_bound
def upper_inv(points): # not for performance right now...
return np.array([root(lambda y: upper_bound_integral(y) - x, x0=0,
jac=upper_bound_fn).x for x in points]).T
upper_bound_integral_inverse = upper_inv
elif len(upper_bound) == 3:
upper_bound_fn, upper_bound_integral, upper_bound_integral_inverse =\
upper_bound
else:
raise ValueError('The upper bound must be `None` or a three element sequence!')
def allocate_random_chunk():
return np.random.uniform([upper_bound_integral(interval[0]), 0],
[upper_bound_integral(interval[1]), 1],
[int(chunk_size*interval_length), 2])
total_points = 0
total_accepted = 0
while True:
points = allocate_random_chunk()
points[:, 0] = upper_bound_integral_inverse(points[:, 0])
sample_points = points[:, 0] \
[np.where(f(points[:, 0]) > \
points[:, 1]*upper_bound_fn(points[:, 0]))]
if report_efficiency:
total_points += points.size
total_accepted += sample_points.size
for point in sample_points:
yield (point, total_accepted/total_points) \
if report_efficiency else point
def sample_unweighted_array(num, *args, report_efficiency=False, **kwargs):
"""Sample `num` elements from a distribution. The rest of the
arguments is analogous to `sample_unweighted`.
"""
sample_arr = np.empty(num)
samples = sample_unweighted(*args, report_efficiency=report_efficiency,
**kwargs)
for i, sample in zip(range(num), samples):
if report_efficiency:
sample_arr[i], _ = sample
else:
sample_arr[i] = sample
return (sample_arr, next(samples)[1]) if report_efficiency else sample_arr