13 KiB
Init
Required Modules
import numpy as np
import matplotlib.pyplot as plt
import monte_carlo
Utilities
%run ../utility.py
%load_ext autoreload
%aimport monte_carlo
%autoreload 1
Implementation
"""
Implementation of the analytical cross section for q q_bar ->
gamma gamma
Author: Valentin Boettcher <hiro@protagon.space>
"""
import numpy as np
# NOTE: a more elegant solution would be a decorator
def energy_factor(charge, esp):
"""
Calculates the factor common to all other values in this module
Arguments:
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
return charge**4/(137.036*esp)**2/6
def diff_xs(θ, charge, esp):
"""
Calculates the differential cross section as a function of the
azimuth angle θ in units of 1/GeV².
Here dΩ=sinθdθdφ
Arguments:
θ -- azimuth angle
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*((np.cos(θ)**2+1)/np.sin(θ)**2)
def diff_xs_cosθ(cosθ, charge, esp):
"""
Calculates the differential cross section as a function of the
cosine of the azimuth angle θ in units of 1/GeV².
Here dΩ=d(cosθ)dφ
Arguments:
cosθ -- cosine of the azimuth angle
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*((cosθ**2+1)/(1-cosθ**2))
def diff_xs_eta(η, charge, esp):
"""
Calculates the differential cross section as a function of the
pseudo rapidity of the photons in units of 1/GeV^2.
This is actually the crossection dσ/(dφdη).
Arguments:
η -- pseudo rapidity
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*(2*np.cosh(η)**2 - 1)*2*np.exp(-η)/np.cosh(η)**2
def total_xs_eta(η, charge, esp):
"""
Calculates the total cross section as a function of the pseudo
rapidity of the photons in units of 1/GeV^2. If the rapditiy is
specified as a tuple, it is interpreted as an interval. Otherwise
the interval [-η, η] will be used.
Arguments:
η -- pseudo rapidity (tuple or number)
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementar charge
"""
f = energy_factor(charge, esp)
if not isinstance(η, tuple):
η = (-η, η)
if len(η) != 2:
raise ValueError('Invalid η cut.')
def F(x):
return np.tanh(x) - 2*x
return 2*np.pi*f*(F(η[0]) - F(η[1]))
Calculations
XS qq -> gamma gamma
First, set up the input parameters.
η = 2.5
charge = 1/3
esp = 200 # GeV
Set up the integration and plot intervals.
interval_η = [-η, η]
interval = η_to_θ([-η, η])
interval_cosθ = np.cos(interval)
interval_pt = η_to_pt([0, η], esp/2)
plot_interval = [0.1, np.pi-.1]
Analytical Integratin
And now calculate the cross section in picobarn.
xs_gev = total_xs_eta(η, charge, esp)
xs_pb = gev_to_pb(xs_gev)
tex_value(xs_pb, unit=r'\pico\barn', prefix=r'\sigma = ', prec=6, save=('results', 'xs.tex'))
\(\sigma = \SI{0.053793}{\pico\barn}\)
Lets plot the total xs as a function of η.
fig, ax = set_up_plot()
η_s = np.linspace(0, 3, 1000)
ax.plot(η_s, gev_to_pb(total_xs_eta(η_s, charge, esp)))
ax.set_xlabel(r'$\eta$')
ax.set_ylabel(r'$\sigma$ [pb]')
ax.set_xlim([0, max(η_s)])
ax.set_ylim(0)
save_fig(fig, 'total_xs', 'xs', size=[2.5, 2])
Compared to sherpa, it's pretty close.
sherpa = 0.05380
xs_pb - sherpa
-6.7112594623469635e-06
I had to set the runcard option EW_SCHEME: alpha0
to use the pure
QED coupling constant.
Numerical Integration
Plot our nice distribution:
plot_points = np.linspace(*plot_interval, 1000)
fig, ax = set_up_plot()
ax.plot(plot_points, gev_to_pb(diff_xs(plot_points, charge=charge, esp=esp)))
ax.set_xlabel(r'$\theta$')
ax.set_ylabel(r'$d\sigma/d\Omega$ [pb]')
ax.axvline(interval[0], color='gray', linestyle='--')
ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
ax.legend()
save_fig(fig, 'diff_xs', 'xs', size=[2.5, 2])
Define the integrand.
def xs_pb_int(θ):
return 2*np.pi*gev_to_pb(np.sin(θ)*diff_xs(θ, charge=charge, esp=esp))
Plot the integrand. # TODO: remove duplication
fig, ax = set_up_plot()
ax.plot(plot_points, xs_pb_int(plot_points))
ax.set_xlabel(r'$\theta$')
ax.set_ylabel(r'$\sin(\theta)\cdot\frac{d\sigma}{d\theta}$ [pb]')
ax.axvline(interval[0], color='gray', linestyle='--')
ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
ax.legend()
save_fig(fig, 'xs_integrand', 'xs', size=[4, 4])
Intergrate σ with the mc method.
xs_pb_mc, xs_pb_mc_err = monte_carlo.integrate(xs_pb_int, interval, 100000)
xs_pb_mc = xs_pb_mc
xs_pb_mc, xs_pb_mc_err
0.05388966591629671 | 5.033605571755944e-05 |
We gonna export that as tex.
tex_value(xs_pb_mc, unit=r'\pico\barn', prefix=r'\sigma = ', err=xs_pb_mc_err, save=('results', 'xs_mc.tex'))
\(\sigma = \SI{0.05389\pm 0.00005}{\pico\barn}\)
Sampling and Analysis
Define the sample number.
sample_num = 1000
Let's define a shortcut for our distribution.
def dist(x):
return gev_to_pb(diff_xs_cosθ(x, charge, esp))*2*np.pi
Now we monte-carlo sample our distribution. We observe that the efficiency his very bad!
cosθ_sample, cosθ_efficiency = \
monte_carlo.sample_unweighted_array(sample_num, dist,
interval_cosθ, report_efficiency=True)
cosθ_efficiency
0.027946369454866477
Our distribution has a lot of variance, as can be seen by plotting it.
pts = np.linspace(*interval_cosθ, 100)
fig, ax = set_up_plot()
ax.plot(pts, dist(pts), label=r'$\frac{d\sigma}{d\Omega}$')
<matplotlib.lines.Line2D | at | 0x7f9c91fef190> |
We define a friendly and easy to integrate upper limit function.
upper_limit = dist(interval_cosθ[0]) \
/interval_cosθ[0]**2
upper_base = dist(0)
def upper(x):
return upper_base + upper_limit*x**2
def upper_int(x):
return upper_base*x + upper_limit*x**3/3
ax.plot(pts, upper(pts), label='Upper bound')
ax.legend()
ax.set_xlabel(r'$\cos\theta$')
ax.set_ylabel(r'$\frac{d\sigma}{d\Omega}$')
save_fig(fig, 'upper_bound', 'xs_sampling', size=(4, 4))
fig
To increase our efficiency, we have to specify an upper bound. That is at least a little bit better. The numeric inversion is horribly inefficent.
cosθ_sample, cosθ_efficiency = \
monte_carlo.sample_unweighted_array(sample_num, dist,
interval_cosθ, report_efficiency=True,
upper_bound=[upper, upper_int])
cosθ_efficiency
0.07860329180126134
Nice! And now draw some histograms.
We define an auxilliary method for convenience.
def draw_histo(points, xlabel, bins=20):
fig, ax = set_up_plot()
ax.hist(points, bins, histtype='step')
ax.set_xlabel(xlabel)
ax.set_xlim([points.min(), points.max()])
return fig, ax
The histogram for cosθ.
fig, _ = draw_histo(cosθ_sample, r'$\cos\theta$')
save_fig(fig, 'histo_cos_theta', 'xs', size=(4,3))
Now we define some utilities to draw real 4-impulse samples.
def sample_impulses(sample_num, interval, charge, esp, seed=None):
"""Samples `sample_num` unweighted photon 4-impulses from the cross-section.
:param sample_num: number of samples to take
:param interval: cosθ interval to sample from
:param charge: the charge of the quark
:param esp: center of mass energy
:param seed: the seed for the rng, optional, default is system
time
:returns: an array of 4 photon impulses
:rtype: np.ndarray
"""
cosθ_sample = \
monte_carlo.sample_unweighted_array(sample_num,
lambda x:
diff_xs_cosθ(x, charge, esp),
interval_cosθ)
φ_sample = np.random.uniform(0, 1, sample_num)
def make_impulse(esp, cosθ, φ):
sinθ = np.sqrt(1-cosθ**2)
return np.array([1, sinθ*np.cos(φ), sinθ*np.sin(φ), cosθ])*esp/2
impulses = np.array([make_impulse(esp, cosθ, φ) \
for cosθ, φ in np.array([cosθ_sample, φ_sample]).T])
return impulses
To generate histograms of other obeservables, we have to define them as functions on 4-impuleses. Using those to transform samples is analogous to transforming the distribution itself.
"""This module defines some observables on arrays of 4-pulses."""
import numpy as np
def p_t(p):
"""Transverse impulse
:param p: array of 4-impulses
"""
return np.linalg.norm(p[:,1:3], axis=1)
def η(p):
"""Pseudo rapidity.
:param p: array of 4-impulses
"""
return np.arccosh(np.linalg.norm(p[:,1:], axis=1)/p_t(p))*np.sign(p[:, 3])
Lets try it out.
impulse_sample = sample_impulses(2000, interval_cosθ, charge, esp)
impulse_sample
array([[100. , 78.6513978 , 25.03974819, -56.4532429 ], [100. , 80.50316938, 1.23982425, 59.31022303], [100. , 37.34488027, 25.09007454, 89.30760369], ..., [100. , 27.28611517, 11.11891923, 95.56064856], [100. , 49.67818369, 55.52508519, 66.70114676], [100. , 32.95364669, 8.54598622, 94.02671583]])
Now let's make a histogram of the η distribution.
η_sample = η(impulse_sample)
draw_histo(η_sample, r'$\eta$')
<Figure | size | 432x288 | with | 1 | Axes> | <matplotlib.axes._subplots.AxesSubplot | at | 0x7f9c92128520> |
And the same for the p_t (transverse impulse) distribution.
p_t_sample = p_t(impulse_sample)
draw_histo(p_t_sample, r'$p_T$ [GeV]')
<Figure | size | 432x288 | with | 1 | Axes> | <matplotlib.axes._subplots.AxesSubplot | at | 0x7f9c9210d5e0> |