shorten the first slide and some tweaks

This commit is contained in:
hiro98 2020-06-26 15:43:19 +02:00
parent d1063f6471
commit 86150cdd4f

View file

@ -185,63 +185,45 @@ labelformat=brace, position=top]{subcaption}
\section{Calculation of the \(\qqgg\) Cross Section}
\subsection{Approach}
\begin{frame}
\begin{columns}[T]
\begin{column}{.5\textwidth}
\begin{figure}[ht]
\centering
\begin{subfigure}[c]{.28\textwidth}
\centering
\begin{tikzpicture}[scale=.6]
\begin{feynman}
\diagram [small,horizontal=i2 to a] { i2
[particle=\(q\)] -- [fermion, momentum=\(p_2\)] a --
[fermion, reversed momentum=\(q\)] b, i1
[particle=\(\bar{q}\)] -- [anti fermion,
momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a --
[photon, momentum=\(p_3\)] f1 [particle=\(\gamma\)], b
-- [photon, momentum'=\(p_4\)] f2
[particle=\(\gamma\)], f1 -- [opacity=0] f2, };
\end{feynman}
\end{tikzpicture}
\subcaption{u channel}
\end{subfigure}
\begin{subfigure}[c]{.28\textwidth}
\centering
\begin{tikzpicture}[scale=.6]
\begin{feynman}
\diagram [small,horizontal=i2 to a] { i2
[particle=\(q\)] -- [fermion, momentum=\(p_2\)] a --
[fermion, reversed momentum'=\(q\)] b, i1
[particle=\(\bar{q}\)] -- [anti fermion,
momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a --
[draw=none] f2 [particle=\(\gamma\)], b -- [draw=none]
f1 [particle=\(\gamma\)], f1 -- [opacity=0] f2, };
\diagram* { (a) -- [photon] (f1), (b) -- [photon] (f2),
};
\end{feynman}
\end{tikzpicture}
\subcaption{\label{fig:qqggfeyn2}t channel}
\end{subfigure}
%
\caption{Leading order diagrams for \(\qqgg\).}%
\label{fig:qqggfeyn}
\end{figure}
\end{column}
\pause
\begin{column}{.5\textwidth}
\begin{block}{Task: calculate \(\abs{\mathcal{M}}^2\)}
\begin{enumerate}[<+->]
\item translate diagrams to matrix elements
\item use Casimir's trick to average over spins
\item use completeness relation to sum over photon
polarizations
\item use trace identities to compute the absolute square
\item simplify with trigonometric identities
\end{enumerate}
\end{block}
\pause Here: Quark masses neglected.
\end{column}
\end{columns}
\begin{figure}[ht]
\centering
\begin{subfigure}{.28\textwidth}
\centering
\begin{tikzpicture}[scale=1]
\begin{feynman}
\diagram [small,horizontal=i2 to a] { i2 [particle=\(q\)] --
[fermion, momentum=\(p_2\)] a -- [fermion, reversed
momentum=\(q\)] b, i1 [particle=\(\bar{q}\)] -- [anti
fermion, momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a --
[photon, momentum=\(p_3\)] f1 [particle=\(\gamma\)], b --
[photon, momentum'=\(p_4\)] f2 [particle=\(\gamma\)], f1
-- [opacity=0] f2, };
\end{feynman}
\end{tikzpicture}
\subcaption{u channel}
\end{subfigure}
\begin{subfigure}{.28\textwidth}
\centering
\begin{tikzpicture}[scale=1]
\begin{feynman}
\diagram [small,horizontal=i2 to a] { i2 [particle=\(q\)] --
[fermion, momentum=\(p_2\)] a -- [fermion, reversed
momentum'=\(q\)] b, i1 [particle=\(\bar{q}\)] -- [anti
fermion, momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a --
[draw=none] f2 [particle=\(\gamma\)], b -- [draw=none] f1
[particle=\(\gamma\)], f1 -- [opacity=0] f2, }; \diagram*
{ (a) -- [photon] (f1), (b) -- [photon] (f2), };
\end{feynman}
\end{tikzpicture}
\subcaption{\t channel}
\end{subfigure}
\caption{Leading order diagrams for \(\qqgg\).}%
\label{fig:qqggfeyn}
\end{figure}
\pause
\begin{center}
here: massless limit
\end{center}
\end{frame}
\subsection{Result}
@ -329,11 +311,13 @@ labelformat=brace, position=top]{subcaption}
\begin{frame}
\pnote{
- WHAT DOES RHO DO
- omitting details (law of big numbers, central limit theorem)\\
- at least three angles of attack\\
- some sort of importance sampling, volume: stratified sampling\\
- ADVANTAGES OF MC
- METHOD NAMES}
- METHOD NAMES
}
\begin{itemize}
\item<+-> we have:
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\)
@ -346,11 +330,11 @@ labelformat=brace, position=top]{subcaption}
\onslide<+->{= \int_\Omega
\qty[\frac{f(\vb{x})}{\rho(\vb{x})}] \rho(\vb{x}) \dd{\vb{x}} = \EX{\frac{F}{\Rho}}}
\end{equation}
\item<+-> numeric approximation:
\item<+-> numeric approximation \({\vb{x}_i \sim \rho}\):
\begin{equation}
\label{eq:approxexp}
\EX{\frac{F}{\Rho}} \approx
\frac{1}{N}\sum_{i=1}^N\frac{f(\vb{x_i})}{\rho(\vb{x_i})}
\frac{1}{N}\sum_{i=1}^N\frac{f(\vb{x}_i)}{\rho(\vb{x}_i)}
\xrightarrow{N\rightarrow\infty} I
\end{equation}
\item<+-> error approximation:
@ -715,7 +699,23 @@ labelformat=brace, position=top]{subcaption}
\end{frame}
\subsection{Results}
\begin{frame}{Cross Sections}
\pnote{
- effects of the cuts
}
\begin{table}[ht]
\centering
\begin{tabular}{l|SSS}
Stage & {\(\sigma\) [\si{\pico\barn}]}\\
\toprule
\stfive & 33.02(7) \\
\stfour & 34.08(7) \\
\stthree & 33.97(7) \\
\sttwo & 34.60(7) \\
\stone & 38.74(7) \\
\end{tabular}
\end{table}
\end{frame}
\begin{frame}{Transverse Momentum of the \(\gamma\gamma\) System}
\begin{columns}
\begin{column}{.5\textwidth}
@ -827,6 +827,65 @@ labelformat=brace, position=top]{subcaption}
\appendix
\section{Appendix}
\begin{frame}
\begin{columns}[T]
\begin{column}{.5\textwidth}
\begin{figure}[ht]
\centering
\begin{subfigure}[c]{.28\textwidth}
\centering
\begin{tikzpicture}[scale=.6]
\begin{feynman}
\diagram [small,horizontal=i2 to a] { i2
[particle=\(q\)] -- [fermion, momentum=\(p_2\)] a --
[fermion, reversed momentum=\(q\)] b, i1
[particle=\(\bar{q}\)] -- [anti fermion,
momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a --
[photon, momentum=\(p_3\)] f1 [particle=\(\gamma\)], b
-- [photon, momentum'=\(p_4\)] f2
[particle=\(\gamma\)], f1 -- [opacity=0] f2, };
\end{feynman}
\end{tikzpicture}
\subcaption{u channel}
\end{subfigure}
\begin{subfigure}[c]{.28\textwidth}
\centering
\begin{tikzpicture}[scale=.6]
\begin{feynman}
\diagram [small,horizontal=i2 to a] { i2
[particle=\(q\)] -- [fermion, momentum=\(p_2\)] a --
[fermion, reversed momentum'=\(q\)] b, i1
[particle=\(\bar{q}\)] -- [anti fermion,
momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a --
[draw=none] f2 [particle=\(\gamma\)], b -- [draw=none]
f1 [particle=\(\gamma\)], f1 -- [opacity=0] f2, };
\diagram* { (a) -- [photon] (f1), (b) -- [photon] (f2),
};
\end{feynman}
\end{tikzpicture}
\subcaption{\label{fig:qqggfeyn2}t channel}
\end{subfigure}
%
\caption{Leading order diagrams for \(\qqgg\).}%
\label{fig:qqggfeyn}
\end{figure}
\end{column}
\pause
\begin{column}{.5\textwidth}
\begin{block}{Task: calculate \(\abs{\mathcal{M}}^2\)}
\begin{enumerate}[<+->]
\item translate diagrams to matrix elements
\item use Casimir's trick to average over spins
\item use completeness relation to sum over photon
polarizations
\item use trace identities to compute the absolute square
\item simplify with trigonometric identities
\end{enumerate}
\end{block}
\pause Here: Quark masses neglected.
\end{column}
\end{columns}
\end{frame}
\begin{frame}{\vegas\ Details}
\begin{columns}