diff --git a/talk/slides.tex b/talk/slides.tex index 701b370..6b8e38e 100644 --- a/talk/slides.tex +++ b/talk/slides.tex @@ -185,63 +185,45 @@ labelformat=brace, position=top]{subcaption} \section{Calculation of the \(\qqgg\) Cross Section} \subsection{Approach} \begin{frame} - \begin{columns}[T] - \begin{column}{.5\textwidth} - \begin{figure}[ht] - \centering - \begin{subfigure}[c]{.28\textwidth} - \centering - \begin{tikzpicture}[scale=.6] - \begin{feynman} - \diagram [small,horizontal=i2 to a] { i2 - [particle=\(q\)] -- [fermion, momentum=\(p_2\)] a -- - [fermion, reversed momentum=\(q\)] b, i1 - [particle=\(\bar{q}\)] -- [anti fermion, - momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a -- - [photon, momentum=\(p_3\)] f1 [particle=\(\gamma\)], b - -- [photon, momentum'=\(p_4\)] f2 - [particle=\(\gamma\)], f1 -- [opacity=0] f2, }; - \end{feynman} - \end{tikzpicture} - \subcaption{u channel} - \end{subfigure} - \begin{subfigure}[c]{.28\textwidth} - \centering - \begin{tikzpicture}[scale=.6] - \begin{feynman} - \diagram [small,horizontal=i2 to a] { i2 - [particle=\(q\)] -- [fermion, momentum=\(p_2\)] a -- - [fermion, reversed momentum'=\(q\)] b, i1 - [particle=\(\bar{q}\)] -- [anti fermion, - momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a -- - [draw=none] f2 [particle=\(\gamma\)], b -- [draw=none] - f1 [particle=\(\gamma\)], f1 -- [opacity=0] f2, }; - \diagram* { (a) -- [photon] (f1), (b) -- [photon] (f2), - }; - \end{feynman} - \end{tikzpicture} - \subcaption{\label{fig:qqggfeyn2}t channel} - \end{subfigure} -% - \caption{Leading order diagrams for \(\qqgg\).}% - \label{fig:qqggfeyn} - \end{figure} - \end{column} - \pause - \begin{column}{.5\textwidth} - \begin{block}{Task: calculate \(\abs{\mathcal{M}}^2\)} - \begin{enumerate}[<+->] - \item translate diagrams to matrix elements - \item use Casimir's trick to average over spins - \item use completeness relation to sum over photon - polarizations - \item use trace identities to compute the absolute square - \item simplify with trigonometric identities - \end{enumerate} - \end{block} - \pause Here: Quark masses neglected. - \end{column} - \end{columns} + \begin{figure}[ht] + \centering + \begin{subfigure}{.28\textwidth} + \centering + \begin{tikzpicture}[scale=1] + \begin{feynman} + \diagram [small,horizontal=i2 to a] { i2 [particle=\(q\)] -- + [fermion, momentum=\(p_2\)] a -- [fermion, reversed + momentum=\(q\)] b, i1 [particle=\(\bar{q}\)] -- [anti + fermion, momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a -- + [photon, momentum=\(p_3\)] f1 [particle=\(\gamma\)], b -- + [photon, momentum'=\(p_4\)] f2 [particle=\(\gamma\)], f1 + -- [opacity=0] f2, }; + \end{feynman} + \end{tikzpicture} + \subcaption{u channel} + \end{subfigure} + \begin{subfigure}{.28\textwidth} + \centering + \begin{tikzpicture}[scale=1] + \begin{feynman} + \diagram [small,horizontal=i2 to a] { i2 [particle=\(q\)] -- + [fermion, momentum=\(p_2\)] a -- [fermion, reversed + momentum'=\(q\)] b, i1 [particle=\(\bar{q}\)] -- [anti + fermion, momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a -- + [draw=none] f2 [particle=\(\gamma\)], b -- [draw=none] f1 + [particle=\(\gamma\)], f1 -- [opacity=0] f2, }; \diagram* + { (a) -- [photon] (f1), (b) -- [photon] (f2), }; + \end{feynman} + \end{tikzpicture} + \subcaption{\t channel} + \end{subfigure} + \caption{Leading order diagrams for \(\qqgg\).}% + \label{fig:qqggfeyn} + \end{figure} + \pause + \begin{center} + here: massless limit + \end{center} \end{frame} \subsection{Result} @@ -329,11 +311,13 @@ labelformat=brace, position=top]{subcaption} \begin{frame} \pnote{ +- WHAT DOES RHO DO - omitting details (law of big numbers, central limit theorem)\\ - at least three angles of attack\\ - some sort of importance sampling, volume: stratified sampling\\ - ADVANTAGES OF MC -- METHOD NAMES} +- METHOD NAMES +} \begin{itemize} \item<+-> we have: \(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\) @@ -346,11 +330,11 @@ labelformat=brace, position=top]{subcaption} \onslide<+->{= \int_\Omega \qty[\frac{f(\vb{x})}{\rho(\vb{x})}] \rho(\vb{x}) \dd{\vb{x}} = \EX{\frac{F}{\Rho}}} \end{equation} - \item<+-> numeric approximation: + \item<+-> numeric approximation \({\vb{x}_i \sim \rho}\): \begin{equation} \label{eq:approxexp} \EX{\frac{F}{\Rho}} \approx - \frac{1}{N}\sum_{i=1}^N\frac{f(\vb{x_i})}{\rho(\vb{x_i})} + \frac{1}{N}\sum_{i=1}^N\frac{f(\vb{x}_i)}{\rho(\vb{x}_i)} \xrightarrow{N\rightarrow\infty} I \end{equation} \item<+-> error approximation: @@ -715,7 +699,23 @@ labelformat=brace, position=top]{subcaption} \end{frame} \subsection{Results} - +\begin{frame}{Cross Sections} +\pnote{ +- effects of the cuts +} + \begin{table}[ht] + \centering + \begin{tabular}{l|SSS} + Stage & {\(\sigma\) [\si{\pico\barn}]}\\ + \toprule + \stfive & 33.02(7) \\ + \stfour & 34.08(7) \\ + \stthree & 33.97(7) \\ + \sttwo & 34.60(7) \\ + \stone & 38.74(7) \\ + \end{tabular} + \end{table} +\end{frame} \begin{frame}{Transverse Momentum of the \(\gamma\gamma\) System} \begin{columns} \begin{column}{.5\textwidth} @@ -827,6 +827,65 @@ labelformat=brace, position=top]{subcaption} \appendix \section{Appendix} +\begin{frame} + \begin{columns}[T] + \begin{column}{.5\textwidth} + \begin{figure}[ht] + \centering + \begin{subfigure}[c]{.28\textwidth} + \centering + \begin{tikzpicture}[scale=.6] + \begin{feynman} + \diagram [small,horizontal=i2 to a] { i2 + [particle=\(q\)] -- [fermion, momentum=\(p_2\)] a -- + [fermion, reversed momentum=\(q\)] b, i1 + [particle=\(\bar{q}\)] -- [anti fermion, + momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a -- + [photon, momentum=\(p_3\)] f1 [particle=\(\gamma\)], b + -- [photon, momentum'=\(p_4\)] f2 + [particle=\(\gamma\)], f1 -- [opacity=0] f2, }; + \end{feynman} + \end{tikzpicture} + \subcaption{u channel} + \end{subfigure} + \begin{subfigure}[c]{.28\textwidth} + \centering + \begin{tikzpicture}[scale=.6] + \begin{feynman} + \diagram [small,horizontal=i2 to a] { i2 + [particle=\(q\)] -- [fermion, momentum=\(p_2\)] a -- + [fermion, reversed momentum'=\(q\)] b, i1 + [particle=\(\bar{q}\)] -- [anti fermion, + momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a -- + [draw=none] f2 [particle=\(\gamma\)], b -- [draw=none] + f1 [particle=\(\gamma\)], f1 -- [opacity=0] f2, }; + \diagram* { (a) -- [photon] (f1), (b) -- [photon] (f2), + }; + \end{feynman} + \end{tikzpicture} + \subcaption{\label{fig:qqggfeyn2}t channel} + \end{subfigure} +% + \caption{Leading order diagrams for \(\qqgg\).}% + \label{fig:qqggfeyn} + \end{figure} + \end{column} + \pause + \begin{column}{.5\textwidth} + \begin{block}{Task: calculate \(\abs{\mathcal{M}}^2\)} + \begin{enumerate}[<+->] + \item translate diagrams to matrix elements + \item use Casimir's trick to average over spins + \item use completeness relation to sum over photon + polarizations + \item use trace identities to compute the absolute square + \item simplify with trigonometric identities + \end{enumerate} + \end{block} + \pause Here: Quark masses neglected. + \end{column} + \end{columns} +\end{frame} \begin{frame}{\vegas\ Details} \begin{columns}