some minor tweaks, thanks Gudrun :)

This commit is contained in:
hiro98 2020-06-29 19:40:19 +02:00
parent 3b703dbd3b
commit 3469c80462
2 changed files with 58 additions and 39 deletions

BIN
latex/figs/normal_cdf.pdf Normal file

Binary file not shown.

View file

@ -218,7 +218,7 @@ labelformat=brace, position=top]{subcaption}
{ (a) -- [photon] (f1), (b) -- [photon] (f2), };
\end{feynman}
\end{tikzpicture}
\subcaption{\t channel}
\subcaption{t channel}
\end{subfigure}
\caption{Leading order diagrams for \(\qqgg\).}%
\label{fig:qqggfeyn}
@ -294,17 +294,17 @@ labelformat=brace, position=top]{subcaption}
\begin{frame}
\pnote{
- Gradually bring in knowledge through distribution. }
\begin{block}{Basic Ideas}
\begin{itemize}
\item<+-> Given some unknown function
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\)
\ldots
\item<+-> \ldots\ how do we answer questions about \(f\)?
\end{itemize}
\begin{block}{Basic Idea}
\begin{center}
Given some unknown function
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\)
\ldots \\ \pauses\ldots\ how do we answer questions about
\(f\)? \\\pause
\;\;\onslide<+->{\(\implies\) Sample it at random points.}
\end{block}
\end{center}
\end{block}
\pause
\begin{block}{Concrete Applications}
\begin{block}{Concrete Applicationss}
\begin{enumerate}
\item<+-> integrate \(f\) over some volume \(\Omega\)
\item<+-> treat \(f\) as distribution and take random samples
@ -325,8 +325,8 @@ labelformat=brace, position=top]{subcaption}
}
\begin{itemize}
\item<+-> we have:
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\)
and \(\rho\colon \vb{x}\in\Omega\mapsto\mathbb{R}_{> 0}\) with
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\)\quad
and\quad \(\rho\colon \vb{x}\in\Omega\mapsto\mathbb{R}_{> 0}\)\quad with\quad
\(\int_{\Omega}\rho(\vb{x})\dd{\vb{x}} = 1\).
\item<+-> we seek:
\begin{equation}
@ -355,9 +355,9 @@ labelformat=brace, position=top]{subcaption}
\end{frame}
\begin{frame}{Naive Integration Change of Variables}
Choose \(\rho(\vb{x}) = \frac{1}{\abs{\Omega}}\)
\onslide<1->{\(\implies I=\frac{\abs{\Omega}}{N}\sum_{i=1}^N
f(\vb{x_i})=\abs{\Omega}\cdot\bar{f}\) and
Choose \(\rho(\vb{x}) = \frac{1}{\abs{\Omega}}\)\\
\onslide<1->{\quad\(\implies I=\frac{\abs{\Omega}}{N}\sum_{i=1}^N
f(\vb{x_i})=\abs{\Omega}\cdot\bar{f}\)\quad and\quad
\(\VAR{\frac{F}{P}}\approx\frac{\abs{\Omega}^2}{N-1}\sum_{i}\qty[f(\vb{x}_i)
- \bar{f}]^2\)}
\pause
@ -440,19 +440,30 @@ labelformat=brace, position=top]{subcaption}
(choose \(\Omega = [0, 1]\)) and uniformly random samples \(\{x_i\}\)
\item we seek: a sample \(\{y_i\}\) distributed according to \(f\)
\end{itemize}
\begin{block}<+->{Basic Idea}
\begin{itemize}[<+->]
\item<.-> let \(x\) be sample of uniform distribution, solve
\[\int_{0}^{y}f(x')\dd{x'} = x\cdot\int_0^1f(x')\dd{x'} =
x\cdot A\] for y to obtain sample of \(f/A\)
\item let \(F\) be the antiderivative of \(f\), then
\(y=F^{-1}(x\cdot A + F(0))\)
\begin{itemize}
\item sometimes analytical form available
\item otherwise tackle that numerically
\end{itemize}
\end{itemize}
\end{block}
\begin{columns}
\begin{column}{.5\textwidth}
\begin{block}<+->{Basic Idea}
\begin{itemize}[<+->]
\item<.-> let \(x\) be sample of uniform distribution, solve
\[\int_{0}^{y}f(x')\dd{x'} = x\cdot\int_0^1f(x')\dd{x'} =
x\cdot A\] for \(y\) to obtain sample of \(f/A\)
\item let \(F\) be the antiderivative of \(f\), then
\(y=F^{-1}(x\cdot A + F(0))\)
\begin{itemize}
\item sometimes analytical form available
\item otherwise tackle that numerically
\end{itemize}
\end{itemize}
\end{block}
\end{column}
\begin{column}{.5\textwidth}<.(-3)->
\begin{figure}
\centering
\includegraphics[width=\columnwidth]{figs/normal_cdf.pdf}
\caption{CDF of the normal distribution.~\cite{wiki:2020no}}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Hit or Miss}
@ -483,7 +494,7 @@ labelformat=brace, position=top]{subcaption}
\begin{frame}{Hit or Miss}
\begin{columns}
\begin{column}{.4\textwidth}
\begin{results}<+->[Results with \(g=a\cdot x^2 + b\)]
\begin{results}<+->[Results with \(g=a + b\cdot x^2\)]
\begin{itemize}
\item<+-> Modest efficiency gain:
\result{xs/python/tuned_th_samp}
@ -543,7 +554,7 @@ labelformat=brace, position=top]{subcaption}
}
\begin{itemize}
\item we want: distributions of other observables \pause
\item turns out: simpliy piping samples \(\{x_i\}\) through a map
\item turns out: simply piping samples \(\{x_i\}\) through a map
\(\gamma\colon\Omega\mapsto\mathbb{R}\) is enough
\end{itemize}
\pause
@ -662,15 +673,23 @@ labelformat=brace, position=top]{subcaption}
\section{Phenomenological Studies}
\begin{frame}{What is missing?}
\pause
\begin{itemize}[<+->]
\item treatement of the beam remnants
\item intrinsic \(\pt\)
\item parton showers \pnote{NLO effects}
\item hadronization
\item multiple interactions
\end{itemize}
\pause \(\implies\) \sherpa\ can model those effects
\pause\pnote{of course there's more missing}
\begin{columns}
\begin{column}{.5\textwidth}
\begin{itemize}[<+->]
\item treatement of the beam remnants
\item intrinsic \(\pt\)
\item parton showers \pnote{NLO effects}
\item hadronization
\item multiple interactions
\end{itemize}
\end{column}
\begin{column}{.5\textwidth}
\begin{center}
\pause {\Huge \sherpa\ can model those effects}
\end{center}
\end{column}
\end{columns}
\end{frame}