2020-04-18 20:00:18 +02:00
|
|
|
|
"""
|
|
|
|
|
Some shorthands for common plotting tasks related to the investigation
|
|
|
|
|
of monte-carlo methods in one rimension.
|
|
|
|
|
|
|
|
|
|
Author: Valentin Boettcher <hiro at protagon.space>
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
2020-04-19 17:34:00 +02:00
|
|
|
|
import numpy as np
|
|
|
|
|
from utility import *
|
2020-04-18 20:00:18 +02:00
|
|
|
|
|
|
|
|
|
|
2020-04-05 13:55:28 +02:00
|
|
|
|
def plot_increments(ax, increment_borders, label=None, *args, **kwargs):
|
|
|
|
|
"""Plot the increment borders from a list. The first and last one
|
|
|
|
|
|
|
|
|
|
:param ax: the axis on which to draw
|
|
|
|
|
:param list increment_borders: the borders of the increments
|
|
|
|
|
:param str label: the label to apply to one of the vertical lines
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
ax.axvline(x=increment_borders[1], label=label, *args, **kwargs)
|
|
|
|
|
|
2020-04-10 14:51:26 +02:00
|
|
|
|
for increment in increment_borders[1:-1]:
|
2020-04-05 13:55:28 +02:00
|
|
|
|
ax.axvline(x=increment, *args, **kwargs)
|
|
|
|
|
|
2020-04-12 14:42:29 +02:00
|
|
|
|
|
|
|
|
|
def plot_vegas_weighted_distribution(
|
|
|
|
|
ax, points, dist, increment_borders, *args, **kwargs
|
|
|
|
|
):
|
2020-04-05 13:55:28 +02:00
|
|
|
|
"""Plot the distribution with VEGAS weights applied.
|
|
|
|
|
|
|
|
|
|
:param ax: axis
|
|
|
|
|
:param points: points
|
|
|
|
|
:param dist: distribution
|
|
|
|
|
:param increment_borders: increment borders
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
num_increments = increment_borders.size
|
|
|
|
|
weighted_dist = dist.copy()
|
|
|
|
|
|
2020-04-12 14:42:29 +02:00
|
|
|
|
for left_border, right_border in zip(increment_borders[:-1], increment_borders[1:]):
|
2020-04-05 13:55:28 +02:00
|
|
|
|
length = right_border - left_border
|
|
|
|
|
mask = (left_border <= points) & (points <= right_border)
|
2020-04-12 14:42:29 +02:00
|
|
|
|
weighted_dist[mask] = dist[mask] * num_increments * length
|
2020-04-05 13:55:28 +02:00
|
|
|
|
|
|
|
|
|
ax.plot(points, weighted_dist, *args, **kwargs)
|
2020-04-10 14:51:26 +02:00
|
|
|
|
|
2020-04-12 14:42:29 +02:00
|
|
|
|
|
|
|
|
|
def plot_stratified_rho(ax, points, increment_borders, *args, **kwargs):
|
|
|
|
|
"""Plot the weighting distribution resulting from the increment
|
|
|
|
|
borders.
|
|
|
|
|
|
|
|
|
|
:param ax: axis
|
|
|
|
|
:param points: points
|
|
|
|
|
:param increment_borders: increment borders
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
num_increments = increment_borders.size
|
|
|
|
|
ρ = np.empty_like(points)
|
|
|
|
|
for left_border, right_border in zip(increment_borders[:-1], increment_borders[1:]):
|
|
|
|
|
length = right_border - left_border
|
|
|
|
|
mask = (left_border <= points) & (points <= right_border)
|
|
|
|
|
ρ[mask] = 1 / (num_increments * length)
|
|
|
|
|
|
|
|
|
|
ax.plot(points, ρ, *args, **kwargs)
|
|
|
|
|
|
2020-04-22 11:26:13 +02:00
|
|
|
|
def draw_histogram(
|
|
|
|
|
ax,
|
|
|
|
|
histogram,
|
|
|
|
|
errorbars=True,
|
|
|
|
|
hist_kwargs=dict(color="#1f77b4"),
|
|
|
|
|
errorbar_kwargs=dict(color="orange"),
|
|
|
|
|
normalize_to=None,
|
|
|
|
|
):
|
|
|
|
|
"""Draws a histogram with optional errorbars using the step style.
|
|
|
|
|
|
|
|
|
|
:param ax: axis to draw on
|
|
|
|
|
:param histogram: an array of the form [heights, edges]
|
|
|
|
|
:param hist_kwargs: keyword args to pass to `ax.step`
|
|
|
|
|
:param errorbar_kwargs: keyword args to pass to `ax.errorbar`
|
|
|
|
|
:param normalize_to: if set, the histogram will be normalized to the value
|
|
|
|
|
:returns: the given axis
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
heights, edges = histogram
|
2020-04-14 16:57:10 +02:00
|
|
|
|
centers = (edges[1:] + edges[:-1]) / 2
|
2020-04-10 14:51:26 +02:00
|
|
|
|
deviations = np.sqrt(heights)
|
2020-04-22 11:26:13 +02:00
|
|
|
|
|
|
|
|
|
if normalize_to is not None:
|
|
|
|
|
integral = heights @ (edges[1:] - edges[:-1])
|
|
|
|
|
heights = heights / integral * normalize_to
|
|
|
|
|
deviations = deviations / integral * normalize_to
|
|
|
|
|
|
|
|
|
|
ax.errorbar(centers, heights, deviations, linestyle="none", **errorbar_kwargs)
|
|
|
|
|
ax.step(edges, [heights[0], *heights], **hist_kwargs)
|
|
|
|
|
print([edges[0], edges[-1]])
|
|
|
|
|
ax.set_xlim(*[edges[0], edges[-1]])
|
|
|
|
|
|
|
|
|
|
return ax
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def draw_histo_auto(points, xlabel, bins=50, range=None, **kwargs):
|
|
|
|
|
"""Creates a histogram figure from sample points, normalized to unity.
|
|
|
|
|
|
|
|
|
|
:param points: samples
|
|
|
|
|
:param xlabel: label of the x axis
|
|
|
|
|
:param bins: number of bins
|
|
|
|
|
:param range: the range of the values
|
|
|
|
|
:returns: figure, axis
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
hist = np.histogram(points, bins, range=range, **kwargs)
|
2020-04-10 14:51:26 +02:00
|
|
|
|
|
|
|
|
|
fig, ax = set_up_plot()
|
2020-04-22 11:26:13 +02:00
|
|
|
|
draw_histogram(ax, hist, normalize_to=1)
|
2020-04-10 14:51:26 +02:00
|
|
|
|
|
|
|
|
|
ax.set_xlabel(xlabel)
|
2020-04-14 16:57:10 +02:00
|
|
|
|
ax.set_ylabel("Count")
|
2020-04-22 11:26:13 +02:00
|
|
|
|
|
2020-04-10 14:51:26 +02:00
|
|
|
|
return fig, ax
|
2020-04-15 16:55:14 +02:00
|
|
|
|
|
|
|
|
|
def draw_yoda_histo(h, xlabel):
|
2020-04-19 17:34:00 +02:00
|
|
|
|
edges = np.append(h.xMins(), h.xMax())
|
|
|
|
|
heights = np.append(h.yVals(), h.yVals()[-1])
|
|
|
|
|
centers = (edges[1:] + edges[:-1]) / 2
|
2020-04-17 09:58:50 +02:00
|
|
|
|
|
2020-04-19 17:34:00 +02:00
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
ax.errorbar(h.xVals(), h.yVals(), h.yErrs(), linestyle="none", color="orange")
|
|
|
|
|
ax.step(edges, heights, color="#1f77b4", where="post")
|
2020-04-17 09:58:50 +02:00
|
|
|
|
|
2020-04-19 17:34:00 +02:00
|
|
|
|
ax.set_xlabel(xlabel)
|
|
|
|
|
ax.set_ylabel("Count")
|
|
|
|
|
ax.set_xlim([h.xMin(), h.xMax()])
|
|
|
|
|
return fig, ax
|