bachelor_thesis/prog/python/qqgg/tangled/plot_utils.py

136 lines
4.5 KiB
Python
Raw Normal View History

def plot_increments(ax, increment_borders, label=None, *args, **kwargs):
"""Plot the increment borders from a list. The first and last one
:param ax: the axis on which to draw
:param list increment_borders: the borders of the increments
:param str label: the label to apply to one of the vertical lines
"""
ax.axvline(x=increment_borders[1], label=label, *args, **kwargs)
2020-04-10 14:51:26 +02:00
for increment in increment_borders[1:-1]:
ax.axvline(x=increment, *args, **kwargs)
2020-04-12 14:42:29 +02:00
def plot_vegas_weighted_distribution(
ax, points, dist, increment_borders, *args, **kwargs
):
"""Plot the distribution with VEGAS weights applied.
:param ax: axis
:param points: points
:param dist: distribution
:param increment_borders: increment borders
"""
num_increments = increment_borders.size
weighted_dist = dist.copy()
2020-04-12 14:42:29 +02:00
for left_border, right_border in zip(increment_borders[:-1], increment_borders[1:]):
length = right_border - left_border
mask = (left_border <= points) & (points <= right_border)
2020-04-12 14:42:29 +02:00
weighted_dist[mask] = dist[mask] * num_increments * length
ax.plot(points, weighted_dist, *args, **kwargs)
2020-04-10 14:51:26 +02:00
2020-04-12 14:42:29 +02:00
def plot_stratified_rho(ax, points, increment_borders, *args, **kwargs):
"""Plot the weighting distribution resulting from the increment
borders.
:param ax: axis
:param points: points
:param increment_borders: increment borders
"""
num_increments = increment_borders.size
ρ = np.empty_like(points)
for left_border, right_border in zip(increment_borders[:-1], increment_borders[1:]):
length = right_border - left_border
mask = (left_border <= points) & (points <= right_border)
ρ[mask] = 1 / (num_increments * length)
ax.plot(points, ρ, *args, **kwargs)
2020-04-10 14:51:26 +02:00
"""
Some shorthands for common plotting tasks related to the investigation
of monte-carlo methods in one rimension.
Author: Valentin Boettcher <hiro at protagon.space>
"""
import matplotlib.pyplot as plt
2020-04-14 16:57:10 +02:00
2020-04-17 09:58:50 +02:00
def draw_histo(points, xlabel, bins=50, range=None, **kwargs):
heights, edges = np.histogram(points, bins, range=range, **kwargs)
2020-04-14 16:57:10 +02:00
centers = (edges[1:] + edges[:-1]) / 2
2020-04-10 14:51:26 +02:00
deviations = np.sqrt(heights)
2020-04-15 18:29:55 +02:00
integral = heights @ (edges[1:] - edges[:-1])
2020-04-17 09:58:50 +02:00
heights = heights / integral
deviations = deviations / integral
2020-04-10 14:51:26 +02:00
fig, ax = set_up_plot()
2020-04-14 16:57:10 +02:00
ax.errorbar(centers, heights, deviations, linestyle="none", color="orange")
ax.step(edges, [heights[0], *heights], color="#1f77b4")
2020-04-10 14:51:26 +02:00
ax.set_xlabel(xlabel)
2020-04-14 16:57:10 +02:00
ax.set_ylabel("Count")
2020-04-17 09:58:50 +02:00
ax.set_xlim(range if range is not None else [points.min(), points.max()])
2020-04-10 14:51:26 +02:00
return fig, ax
2020-04-15 16:55:14 +02:00
def draw_yoda_histo(h, xlabel):
2020-04-17 09:58:50 +02:00
edges = np.append(h.xMins(), h.xMax())
heights = np.append(h.yVals(), h.yVals()[-1])
centers = (edges[1:] + edges[:-1]) / 2
2020-04-15 16:55:14 +02:00
2020-04-17 09:58:50 +02:00
fig, ax = set_up_plot()
ax.errorbar(h.xVals(), h.yVals(), h.yErrs(), linestyle="none", color="orange")
ax.step(edges, heights, color="#1f77b4", where="post")
2020-04-15 16:55:14 +02:00
2020-04-17 09:58:50 +02:00
ax.set_xlabel(xlabel)
ax.set_ylabel("Count")
ax.set_xlim([h.xMin(), h.xMax()])
return fig, ax
#+end_srctypes pytohn
#+RESULTS:
#+begin_src jupyter-python :exports both :results raw drawer
yoda_file = yoda.read("../../runcards/qqgg/analysis/Analysis.yoda")
sherpa_histos = {"pT": r"$p_T$ [GeV]", "eta": r"$\eta$", "cos_theta": r"$\cos\theta$"}
for key, label in sherpa_histos.items():
fig, ax = draw_yoda_histo(
yoda_file["/MC_DIPHOTON_SIMPLE/" + key], r"Sherpa " + label
)
save_fig(fig, "histo_sherpa_" + key, "xs_sampling", size=(3, 3))
def draw_yoda_histo(h, xlabel):
edges = np.append(h.xMins(), h.xMax())
heights = np.append(h.yVals(), h.yVals()[-1])
centers = (edges[1:] + edges[:-1]) / 2
fig, ax = set_up_plot()
ax.errorbar(h.xVals(), h.yVals(), h.yErrs(), linestyle="none", color="orange")
ax.step(edges, heights, color="#1f77b4", where="post")
ax.set_xlabel(xlabel)
ax.set_ylabel("Count")
ax.set_xlim([h.xMin(), h.xMax()])
return fig, ax
#+end_srctypes pytohn
#+RESULTS:
#+begin_src jupyter-python :exports both :results raw drawer
yoda_file = yoda.read("../../runcards/qqgg/analysis/Analysis.yoda")
sherpa_histos = {"pT": r"$p_T$ [GeV]", "eta": r"$\eta$", "cos_theta": r"$\cos\theta$"}
for key, label in sherpa_histos.items():
fig, ax = draw_yoda_histo(
yoda_file["/MC_DIPHOTON_SIMPLE/" + key], r"Sherpa " + label
)
save_fig(fig, "histo_sherpa_" + key, "xs_sampling", size=(3, 3))