arb/acb_dirichlet/group_init.c

119 lines
3.1 KiB
C

/*
Copyright (C) 2015 Jonathan Bober
Copyright (C) 2016 Fredrik Johansson
Copyright (C) 2016 Pascal Molin
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See <http://www.gnu.org/licenses/>.
*/
#include "acb_dirichlet.h"
static ulong
primitive_root_p_and_p2(ulong p)
{
if (p == 40487)
return 10;
#if FLINT_BITS == 64
if (p == UWORD(6692367337))
return 7;
if (p > UWORD(1000000000000))
{
printf("primitive root: p > 10^12 not implemented");
abort();
}
#endif
return n_primitive_root_prime(p);
}
void
acb_dirichlet_group_init(acb_dirichlet_group_t G, ulong q)
{
slong k;
ulong e2 = 0;
n_factor_t fac;
G->q = q;
nmod_init(&G->mod, q);
G->q_odd = q;
G->q_even = 1;
while (G->q_odd % 2 == 0)
{
G->q_odd /= 2;
G->q_even *= 2;
e2++;
}
n_factor_init(&fac);
n_factor(&fac, G->q_odd, 1);
/* number of components at p=2 */
G->neven = (e2 >= 3) ? 2 : (e2 == 2) ? 1 : 0;
G->num = G->neven + fac.num;
G->primes = flint_malloc(G->num * sizeof(ulong));
G->exponents = flint_malloc(G->num * sizeof(ulong));
G->primepowers = flint_malloc(G->num * sizeof(ulong));
G->generators = flint_malloc(G->num * sizeof(ulong));
G->phi = flint_malloc(G->num * sizeof(ulong));
G->PHI = flint_malloc(G->num * sizeof(ulong));
G->dlog = NULL;
/* even part */
G->expo = G->phi_q = 1;
if (G->neven >= 1)
{
G->primes[0] = 2;
G->exponents[0] = 2;
G->phi[0] = 2;
G->primepowers[0] = G->q_even;
G->generators[0] = G->q_even-1;
G->expo = 2;
G->phi_q = 2;
}
if (G->neven == 2)
{
G->primes[1] = 2;
G->exponents[1] = e2;
G->phi[1] = G->q_even / 4;
G->primepowers[1] = G->q_even;
G->generators[1] = 5;
G->expo = G->phi[1];
G->phi_q = G->q_even / 2;
}
/* odd part */
for (k = G->neven; k < G->num; k++)
{
ulong p1, pe1;
G->primes[k] = fac.p[k - G->neven];
G->exponents[k] = fac.exp[k - G->neven];
p1 = G->primes[k] - 1;
pe1 = n_pow(G->primes[k], G->exponents[k]-1);
G->phi[k] = p1 * pe1;
G->primepowers[k] = pe1 * G->primes[k];
G->generators[k] = primitive_root_p_and_p2(G->primes[k]);
G->expo *= G->phi[k] / n_gcd(G->expo, p1);
G->phi_q *= G->phi[k];
}
/* generic odd+even */
for (k = 0; k < G->num; k++)
{
ulong pe, qpe, v;
G->PHI[k] = G->expo / G->phi[k];
/* lift generators mod q */
/* u * p^e + v * q/p^e = 1 -> g mod q = 1 + (g-1) * v*(q/p^e) */
pe = G->primepowers[k];
qpe = q / pe;
v = n_invmod(qpe % pe, pe);
/* no overflow since v * qpe < q */
G->generators[k] = (1 + (G->generators[k]-1) * v * qpe) % q;
}
}