/* Copyright (C) 2015 Jonathan Bober Copyright (C) 2016 Fredrik Johansson Copyright (C) 2016 Pascal Molin This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_dirichlet.h" static ulong primitive_root_p_and_p2(ulong p) { if (p == 40487) return 10; #if FLINT_BITS == 64 if (p == UWORD(6692367337)) return 7; if (p > UWORD(1000000000000)) { printf("primitive root: p > 10^12 not implemented"); abort(); } #endif return n_primitive_root_prime(p); } void acb_dirichlet_group_init(acb_dirichlet_group_t G, ulong q) { slong k; ulong e2 = 0; n_factor_t fac; G->q = q; nmod_init(&G->mod, q); G->q_odd = q; G->q_even = 1; while (G->q_odd % 2 == 0) { G->q_odd /= 2; G->q_even *= 2; e2++; } n_factor_init(&fac); n_factor(&fac, G->q_odd, 1); /* number of components at p=2 */ G->neven = (e2 >= 3) ? 2 : (e2 == 2) ? 1 : 0; G->num = G->neven + fac.num; G->primes = flint_malloc(G->num * sizeof(ulong)); G->exponents = flint_malloc(G->num * sizeof(ulong)); G->primepowers = flint_malloc(G->num * sizeof(ulong)); G->generators = flint_malloc(G->num * sizeof(ulong)); G->phi = flint_malloc(G->num * sizeof(ulong)); G->PHI = flint_malloc(G->num * sizeof(ulong)); G->dlog = NULL; /* even part */ G->expo = G->phi_q = 1; if (G->neven >= 1) { G->primes[0] = 2; G->exponents[0] = 2; G->phi[0] = 2; G->primepowers[0] = G->q_even; G->generators[0] = G->q_even-1; G->expo = 2; G->phi_q = 2; } if (G->neven == 2) { G->primes[1] = 2; G->exponents[1] = e2; G->phi[1] = G->q_even / 4; G->primepowers[1] = G->q_even; G->generators[1] = 5; G->expo = G->phi[1]; G->phi_q = G->q_even / 2; } /* odd part */ for (k = G->neven; k < G->num; k++) { ulong p1, pe1; G->primes[k] = fac.p[k - G->neven]; G->exponents[k] = fac.exp[k - G->neven]; p1 = G->primes[k] - 1; pe1 = n_pow(G->primes[k], G->exponents[k]-1); G->phi[k] = p1 * pe1; G->primepowers[k] = pe1 * G->primes[k]; G->generators[k] = primitive_root_p_and_p2(G->primes[k]); G->expo *= G->phi[k] / n_gcd(G->expo, p1); G->phi_q *= G->phi[k]; } /* generic odd+even */ for (k = 0; k < G->num; k++) { ulong pe, qpe, v; G->PHI[k] = G->expo / G->phi[k]; /* lift generators mod q */ /* u * p^e + v * q/p^e = 1 -> g mod q = 1 + (g-1) * v*(q/p^e) */ pe = G->primepowers[k]; qpe = q / pe; v = n_invmod(qpe % pe, pe); /* no overflow since v * qpe < q */ G->generators[k] = (1 + (G->generators[k]-1) * v * qpe) % q; } }