mirror of
https://github.com/vale981/arb
synced 2025-03-06 01:41:39 -05:00
508 lines
12 KiB
C
508 lines
12 KiB
C
/*=============================================================================
|
|
|
|
This file is part of ARB.
|
|
|
|
ARB is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
ARB is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with ARB; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2014 Fredrik Johansson
|
|
|
|
******************************************************************************/
|
|
|
|
#include "acb.h"
|
|
#include "acb_poly.h"
|
|
|
|
/* Checks that |arg(z)| <= 3 pi / 4 */
|
|
static int
|
|
acb_check_arg(const acb_t z)
|
|
{
|
|
mag_t re, im;
|
|
int res;
|
|
|
|
if (!arb_contains_negative(acb_realref(z)))
|
|
return 1;
|
|
|
|
mag_init(re);
|
|
mag_init(im);
|
|
|
|
arb_get_mag(re, acb_realref(z));
|
|
arb_get_mag_lower(im, acb_imagref(z));
|
|
|
|
res = mag_cmp(re, im) < 0;
|
|
|
|
mag_clear(re);
|
|
mag_clear(im);
|
|
|
|
return res;
|
|
}
|
|
|
|
static void
|
|
sqrtmul(acb_t c, const acb_t a, const acb_t b, slong prec)
|
|
{
|
|
if (arb_is_positive(acb_realref(a)) &&
|
|
arb_is_positive(acb_realref(b)))
|
|
{
|
|
acb_mul(c, a, b, prec);
|
|
acb_sqrt(c, c, prec);
|
|
}
|
|
else if (arb_is_nonnegative(acb_imagref(a)) &&
|
|
arb_is_nonnegative(acb_imagref(b)))
|
|
{
|
|
acb_mul(c, a, b, prec);
|
|
acb_neg(c, c);
|
|
acb_sqrt(c, c, prec);
|
|
acb_mul_onei(c, c);
|
|
}
|
|
else if (arb_is_nonpositive(acb_imagref(a)) &&
|
|
arb_is_nonpositive(acb_imagref(b)))
|
|
{
|
|
acb_mul(c, a, b, prec);
|
|
acb_neg(c, c);
|
|
acb_sqrt(c, c, prec);
|
|
acb_mul_onei(c, c);
|
|
acb_neg(c, c);
|
|
}
|
|
else
|
|
{
|
|
acb_t d;
|
|
acb_init(d);
|
|
acb_sqrt(c, a, prec);
|
|
acb_sqrt(d, b, prec);
|
|
acb_mul(c, c, d, prec);
|
|
acb_clear(d);
|
|
}
|
|
}
|
|
|
|
void
|
|
acb_agm1_basecase(acb_t res, const acb_t z, slong prec)
|
|
{
|
|
acb_t a, b, t, u;
|
|
mag_t err;
|
|
int isreal;
|
|
|
|
if (acb_is_zero(z))
|
|
{
|
|
acb_zero(res);
|
|
return;
|
|
}
|
|
|
|
if (acb_is_one(z))
|
|
{
|
|
acb_one(res);
|
|
return;
|
|
}
|
|
|
|
if (!acb_check_arg(z))
|
|
{
|
|
mag_t one;
|
|
mag_init(one);
|
|
mag_init(err);
|
|
mag_one(one);
|
|
acb_get_mag(err, z);
|
|
mag_max(err, err, one);
|
|
acb_zero(res);
|
|
acb_add_error_mag(res, err);
|
|
mag_clear(err);
|
|
mag_clear(one);
|
|
return;
|
|
}
|
|
|
|
isreal = acb_is_real(z) && arb_is_nonnegative(acb_realref(z));
|
|
|
|
acb_init(a);
|
|
acb_init(b);
|
|
acb_init(t);
|
|
acb_init(u);
|
|
mag_init(err);
|
|
|
|
acb_one(a);
|
|
acb_set_round(b, z, prec);
|
|
|
|
while (!acb_overlaps(a, b))
|
|
{
|
|
acb_add(t, a, b, prec);
|
|
acb_mul_2exp_si(t, t, -1);
|
|
|
|
sqrtmul(u, a, b, prec);
|
|
|
|
acb_swap(t, a);
|
|
acb_swap(u, b);
|
|
}
|
|
|
|
/* Dupont's thesis, p. 87:
|
|
|M(z) - a_n| <= |a_n - b_n| */
|
|
acb_sub(t, a, b, prec);
|
|
acb_get_mag(err, t);
|
|
|
|
if (isreal)
|
|
arb_add_error_mag(acb_realref(a), err);
|
|
else
|
|
acb_add_error_mag(a, err);
|
|
|
|
acb_set(res, a);
|
|
|
|
acb_clear(a);
|
|
acb_clear(b);
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
mag_clear(err);
|
|
}
|
|
|
|
/*
|
|
Computes (M(z), M'(z)) using a finite difference.
|
|
Assumes z exact, |arg(z)| <= 3 pi / 4.
|
|
*/
|
|
void
|
|
acb_agm1_deriv_diff(acb_t Mz, acb_t Mzp, const acb_t z, slong prec)
|
|
{
|
|
mag_t err, t;
|
|
fmpz_t rexp, hexp;
|
|
slong wp;
|
|
int isreal;
|
|
|
|
if (!acb_is_exact(z) || !acb_is_finite(z) ||
|
|
acb_is_zero(z) || !acb_check_arg(z))
|
|
{
|
|
acb_indeterminate(Mz);
|
|
acb_indeterminate(Mzp);
|
|
return;
|
|
}
|
|
|
|
isreal = acb_is_real(z) && arb_is_nonnegative(acb_realref(z));
|
|
|
|
/*
|
|
|M^(k)(z) / k!| <= C * D^k where
|
|
C = max(1, |z| + r),
|
|
D = 1/r,
|
|
and 0 < r < |z|
|
|
|
|
M(z+h) - M(z)
|
|
|------------- - M'(z)| <= C D^2 h / (1 - D h)
|
|
h
|
|
|
|
h D < 1.
|
|
*/
|
|
|
|
fmpz_init(hexp);
|
|
fmpz_init(rexp);
|
|
mag_init(err);
|
|
mag_init(t);
|
|
|
|
/* choose r = 2^rexp such that r < |z| */
|
|
acb_get_mag_lower(t, z);
|
|
fmpz_sub_ui(rexp, MAG_EXPREF(t), 2);
|
|
|
|
/* Choose h = 2^hexp with hexp = rexp - (prec + 5).
|
|
D = 2^-rexp
|
|
C D^2 h / (1 - D h) <= C * 2^(-5-prec-rexp+1)
|
|
*/
|
|
|
|
/* err = C = max(1, |z| + r) */
|
|
acb_get_mag(err, z);
|
|
mag_one(t);
|
|
mag_mul_2exp_fmpz(t, t, rexp);
|
|
mag_add(err, err, t);
|
|
mag_one(t);
|
|
mag_max(err, err, t);
|
|
|
|
/* multiply by 2^(-5-prec-rexp+1) (use hexp as temp) */
|
|
fmpz_set_si(hexp, 1 - 5 - prec);
|
|
fmpz_sub(hexp, hexp, rexp);
|
|
mag_mul_2exp_fmpz(err, err, hexp);
|
|
|
|
/* choose h = 2^hexp */
|
|
fmpz_sub_ui(hexp, rexp, prec + 5);
|
|
|
|
/* compute finite difference */
|
|
wp = 2 * prec + 10;
|
|
acb_agm1_basecase(Mz, z, wp);
|
|
acb_one(Mzp);
|
|
acb_mul_2exp_fmpz(Mzp, Mzp, hexp);
|
|
acb_add(Mzp, Mzp, z, wp);
|
|
acb_agm1_basecase(Mzp, Mzp, wp);
|
|
acb_sub(Mzp, Mzp, Mz, prec);
|
|
fmpz_neg(hexp, hexp);
|
|
acb_mul_2exp_fmpz(Mzp, Mzp, hexp);
|
|
|
|
if (isreal)
|
|
arb_add_error_mag(acb_realref(Mzp), err);
|
|
else
|
|
acb_add_error_mag(Mzp, err);
|
|
|
|
acb_set_round(Mz, Mz, prec);
|
|
|
|
fmpz_clear(hexp);
|
|
fmpz_clear(rexp);
|
|
mag_clear(err);
|
|
mag_clear(t);
|
|
}
|
|
|
|
/*
|
|
For input z + eps
|
|
|
|
First derivative bound: max(1, |z|+|eps|+r) / r
|
|
Second derivative bound: 2 max(1, |z|+|eps|+r) / r^2
|
|
|
|
This is assuming that the circle at z with radius |eps| + r
|
|
does not cross the negative half axis, which we check.
|
|
*/
|
|
|
|
void
|
|
acb_agm1_deriv_right(acb_t Mz, acb_t Mzp, const acb_t z, slong prec)
|
|
{
|
|
if (acb_is_exact(z))
|
|
{
|
|
acb_agm1_deriv_diff(Mz, Mzp, z, prec);
|
|
}
|
|
else
|
|
{
|
|
if (!acb_is_finite(z) || !acb_check_arg(z))
|
|
{
|
|
acb_indeterminate(Mz);
|
|
acb_indeterminate(Mzp);
|
|
}
|
|
else
|
|
{
|
|
acb_t t;
|
|
mag_t r, eps, err, one;
|
|
int isreal;
|
|
|
|
acb_init(t);
|
|
mag_init(r);
|
|
mag_init(err);
|
|
mag_init(one);
|
|
mag_init(eps);
|
|
|
|
isreal = acb_is_real(z) && arb_is_nonnegative(acb_realref(z));
|
|
|
|
mag_hypot(eps, arb_radref(acb_realref(z)), arb_radref(acb_imagref(z)));
|
|
|
|
/* choose r avoiding overlap with negative half axis */
|
|
if (arf_sgn(arb_midref(acb_realref(z))) < 0)
|
|
arb_get_mag_lower(r, acb_imagref(z));
|
|
else
|
|
acb_get_mag_lower(r, z);
|
|
|
|
mag_mul_2exp_si(r, r, -1);
|
|
|
|
if (mag_is_zero(r))
|
|
{
|
|
acb_indeterminate(Mz);
|
|
acb_indeterminate(Mzp);
|
|
}
|
|
else
|
|
{
|
|
acb_set(t, z);
|
|
mag_zero(arb_radref(acb_realref(t)));
|
|
mag_zero(arb_radref(acb_imagref(t)));
|
|
|
|
acb_get_mag(err, z);
|
|
mag_add(err, err, r);
|
|
mag_add(err, err, eps);
|
|
mag_one(one);
|
|
mag_max(err, err, one);
|
|
mag_mul(err, err, eps);
|
|
|
|
acb_agm1_deriv_diff(Mz, Mzp, t, prec);
|
|
|
|
mag_div(err, err, r);
|
|
|
|
if (isreal)
|
|
arb_add_error_mag(acb_realref(Mz), err);
|
|
else
|
|
acb_add_error_mag(Mz, err);
|
|
|
|
mag_div(err, err, r);
|
|
mag_mul_2exp_si(err, err, 1);
|
|
|
|
if (isreal)
|
|
arb_add_error_mag(acb_realref(Mzp), err);
|
|
else
|
|
acb_add_error_mag(Mzp, err);
|
|
}
|
|
|
|
acb_clear(t);
|
|
mag_clear(r);
|
|
mag_clear(err);
|
|
mag_clear(one);
|
|
mag_clear(eps);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
acb_agm1(acb_t m, const acb_t z, slong prec)
|
|
{
|
|
if (arf_sgn(arb_midref(acb_realref(z))) >= 0)
|
|
{
|
|
acb_agm1_basecase(m, z, prec);
|
|
}
|
|
else
|
|
{
|
|
/* use M(z) = (z+1)/2 * M(2 sqrt(z) / (z+1)) */
|
|
acb_t t;
|
|
acb_init(t);
|
|
acb_add_ui(t, z, 1, prec);
|
|
acb_sqrt(m, z, prec);
|
|
acb_div(m, m, t, prec);
|
|
acb_mul_2exp_si(m, m, 1);
|
|
acb_agm1_basecase(m, m, prec);
|
|
acb_mul(m, m, t, prec);
|
|
acb_mul_2exp_si(m, m, -1);
|
|
acb_clear(t);
|
|
}
|
|
}
|
|
|
|
void
|
|
acb_agm1_deriv(acb_t Mz, acb_t Mzp, const acb_t z, slong prec)
|
|
{
|
|
/*
|
|
u = 2 sqrt(z) / (1+z)
|
|
|
|
Mz = (1+z) M(u) / 2
|
|
Mzp = [M(u) - (z-1) M'(u) / ((1+z) sqrt(z))] / 2
|
|
*/
|
|
|
|
if (arf_sgn(arb_midref(acb_realref(z))) >= 0)
|
|
{
|
|
acb_agm1_deriv_right(Mz, Mzp, z, prec);
|
|
}
|
|
else
|
|
{
|
|
acb_t t, u, zp1, zm1;
|
|
|
|
acb_init(t);
|
|
acb_init(u);
|
|
acb_init(zp1);
|
|
acb_init(zm1);
|
|
|
|
acb_sqrt(t, z, prec);
|
|
acb_add_ui(zp1, z, 1, prec);
|
|
acb_sub_ui(zm1, z, 1, prec);
|
|
|
|
acb_div(u, t, zp1, prec);
|
|
acb_mul_2exp_si(u, u, 1);
|
|
|
|
acb_agm1_deriv_right(Mz, Mzp, u, prec);
|
|
|
|
acb_mul(Mzp, Mzp, zm1, prec);
|
|
acb_mul(t, t, zp1, prec);
|
|
acb_div(Mzp, Mzp, t, prec);
|
|
acb_sub(Mzp, Mz, Mzp, prec);
|
|
acb_mul_2exp_si(Mzp, Mzp, -1);
|
|
|
|
acb_mul(Mz, Mz, zp1, prec);
|
|
acb_mul_2exp_si(Mz, Mz, -1);
|
|
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
acb_clear(zp1);
|
|
acb_clear(zm1);
|
|
}
|
|
}
|
|
|
|
void
|
|
acb_agm1_cpx(acb_ptr m, const acb_t z, slong len, slong prec)
|
|
{
|
|
if (len < 1)
|
|
return;
|
|
|
|
if (len == 1)
|
|
{
|
|
acb_agm1(m, z, prec);
|
|
return;
|
|
}
|
|
|
|
if (len == 2)
|
|
{
|
|
acb_agm1_deriv(m, m + 1, z, prec);
|
|
return;
|
|
}
|
|
|
|
if (len >= 3)
|
|
{
|
|
acb_t t, u, v;
|
|
acb_ptr w;
|
|
slong k, n;
|
|
|
|
acb_init(t);
|
|
acb_init(u);
|
|
acb_init(v);
|
|
w = _acb_vec_init(len);
|
|
|
|
acb_agm1_deriv(w, w + 1, z, prec);
|
|
|
|
/* invert series */
|
|
acb_inv(w, w, prec);
|
|
acb_mul(t, w, w, prec);
|
|
acb_mul(w + 1, w + 1, t, prec);
|
|
acb_neg(w + 1, w + 1);
|
|
|
|
if (acb_is_one(z))
|
|
{
|
|
for (k = 2; k < len; k++)
|
|
{
|
|
n = k - 2;
|
|
|
|
acb_mul_ui(w + k, w + n + 0, (n+1)*(n+1), prec);
|
|
acb_addmul_ui(w + k, w + n + 1, 7+3*n*(3+n), prec);
|
|
acb_div_ui(w + k, w + k, 2*(n+2)*(n+2), prec);
|
|
acb_neg(w + k, w + k);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* t = 3z^2 - 1 */
|
|
/* u = -1 / (z^3 - z) */
|
|
acb_mul(t, z, z, prec);
|
|
acb_mul(u, t, z, prec);
|
|
acb_mul_ui(t, t, 3, prec);
|
|
acb_sub_ui(t, t, 1, prec);
|
|
acb_sub(u, u, z, prec);
|
|
acb_inv(u, u, prec);
|
|
acb_neg(u, u);
|
|
|
|
/* use differential equation for second derivative */
|
|
acb_mul(w + 2, z, w + 0, prec);
|
|
acb_addmul(w + 2, t, w + 1, prec);
|
|
acb_mul(w + 2, w + 2, u, prec);
|
|
acb_mul_2exp_si(w + 2, w + 2, -1);
|
|
|
|
/* recurrence */
|
|
for (k = 3; k < len; k++)
|
|
{
|
|
n = k - 3;
|
|
acb_mul_ui(w + k, w + n + 0, (n+1)*(n+1), prec);
|
|
acb_mul(v, w + n + 1, z, prec);
|
|
acb_addmul_ui(w + k, v, 7+3*n*(3+n), prec);
|
|
acb_mul(v, w + n + 2, t, prec);
|
|
acb_addmul_ui(w + k, v, (n+2)*(n+2), prec);
|
|
acb_mul(w + k, w + k, u, prec);
|
|
acb_div_ui(w + k, w + k, (n+2)*(n+3), prec);
|
|
}
|
|
}
|
|
|
|
/* invert series */
|
|
_acb_poly_inv_series(m, w, len, len, prec);
|
|
|
|
acb_clear(t);
|
|
acb_clear(u);
|
|
acb_clear(v);
|
|
_acb_vec_clear(w, len);
|
|
}
|
|
}
|
|
|