arb/acb/agm1.c

509 lines
12 KiB
C
Raw Normal View History

/*=============================================================================
This file is part of ARB.
ARB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
ARB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ARB; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2014 Fredrik Johansson
******************************************************************************/
#include "acb.h"
#include "acb_poly.h"
/* Checks that |arg(z)| <= 3 pi / 4 */
static int
acb_check_arg(const acb_t z)
{
mag_t re, im;
int res;
if (!arb_contains_negative(acb_realref(z)))
return 1;
mag_init(re);
mag_init(im);
arb_get_mag(re, acb_realref(z));
arb_get_mag_lower(im, acb_imagref(z));
res = mag_cmp(re, im) < 0;
mag_clear(re);
mag_clear(im);
return res;
}
static void
2015-11-05 17:43:36 +00:00
sqrtmul(acb_t c, const acb_t a, const acb_t b, slong prec)
{
if (arb_is_positive(acb_realref(a)) &&
arb_is_positive(acb_realref(b)))
{
acb_mul(c, a, b, prec);
acb_sqrt(c, c, prec);
}
else if (arb_is_nonnegative(acb_imagref(a)) &&
arb_is_nonnegative(acb_imagref(b)))
{
acb_mul(c, a, b, prec);
acb_neg(c, c);
acb_sqrt(c, c, prec);
acb_mul_onei(c, c);
}
else if (arb_is_nonpositive(acb_imagref(a)) &&
arb_is_nonpositive(acb_imagref(b)))
{
acb_mul(c, a, b, prec);
acb_neg(c, c);
acb_sqrt(c, c, prec);
acb_mul_onei(c, c);
acb_neg(c, c);
}
else
{
acb_t d;
acb_init(d);
acb_sqrt(c, a, prec);
acb_sqrt(d, b, prec);
acb_mul(c, c, d, prec);
acb_clear(d);
}
}
void
2015-11-05 17:43:36 +00:00
acb_agm1_basecase(acb_t res, const acb_t z, slong prec)
{
acb_t a, b, t, u;
mag_t err;
int isreal;
if (acb_is_zero(z))
{
acb_zero(res);
return;
}
if (acb_is_one(z))
{
acb_one(res);
return;
}
if (!acb_check_arg(z))
{
mag_t one;
mag_init(one);
mag_init(err);
mag_one(one);
acb_get_mag(err, z);
mag_max(err, err, one);
acb_zero(res);
acb_add_error_mag(res, err);
mag_clear(err);
mag_clear(one);
return;
}
isreal = acb_is_real(z) && arb_is_nonnegative(acb_realref(z));
acb_init(a);
acb_init(b);
acb_init(t);
acb_init(u);
mag_init(err);
acb_one(a);
acb_set_round(b, z, prec);
while (!acb_overlaps(a, b))
{
acb_add(t, a, b, prec);
acb_mul_2exp_si(t, t, -1);
sqrtmul(u, a, b, prec);
acb_swap(t, a);
acb_swap(u, b);
}
/* Dupont's thesis, p. 87:
|M(z) - a_n| <= |a_n - b_n| */
acb_sub(t, a, b, prec);
acb_get_mag(err, t);
if (isreal)
arb_add_error_mag(acb_realref(a), err);
else
acb_add_error_mag(a, err);
acb_set(res, a);
acb_clear(a);
acb_clear(b);
acb_clear(t);
acb_clear(u);
mag_clear(err);
}
/*
Computes (M(z), M'(z)) using a finite difference.
Assumes z exact, |arg(z)| <= 3 pi / 4.
*/
void
2015-11-05 17:43:36 +00:00
acb_agm1_deriv_diff(acb_t Mz, acb_t Mzp, const acb_t z, slong prec)
{
mag_t err, t;
fmpz_t rexp, hexp;
2015-11-05 17:43:36 +00:00
slong wp;
int isreal;
if (!acb_is_exact(z) || !acb_is_finite(z) ||
acb_is_zero(z) || !acb_check_arg(z))
{
acb_indeterminate(Mz);
acb_indeterminate(Mzp);
return;
}
isreal = acb_is_real(z) && arb_is_nonnegative(acb_realref(z));
/*
|M^(k)(z) / k!| <= C * D^k where
C = max(1, |z| + r),
D = 1/r,
and 0 < r < |z|
M(z+h) - M(z)
|------------- - M'(z)| <= C D^2 h / (1 - D h)
h
h D < 1.
*/
fmpz_init(hexp);
fmpz_init(rexp);
mag_init(err);
mag_init(t);
/* choose r = 2^rexp such that r < |z| */
acb_get_mag_lower(t, z);
fmpz_sub_ui(rexp, MAG_EXPREF(t), 2);
/* Choose h = 2^hexp with hexp = rexp - (prec + 5).
D = 2^-rexp
C D^2 h / (1 - D h) <= C * 2^(-5-prec-rexp+1)
*/
/* err = C = max(1, |z| + r) */
acb_get_mag(err, z);
mag_one(t);
mag_mul_2exp_fmpz(t, t, rexp);
mag_add(err, err, t);
mag_one(t);
mag_max(err, err, t);
/* multiply by 2^(-5-prec-rexp+1) (use hexp as temp) */
fmpz_set_si(hexp, 1 - 5 - prec);
fmpz_sub(hexp, hexp, rexp);
mag_mul_2exp_fmpz(err, err, hexp);
/* choose h = 2^hexp */
fmpz_sub_ui(hexp, rexp, prec + 5);
/* compute finite difference */
wp = 2 * prec + 10;
acb_agm1_basecase(Mz, z, wp);
acb_one(Mzp);
acb_mul_2exp_fmpz(Mzp, Mzp, hexp);
acb_add(Mzp, Mzp, z, wp);
acb_agm1_basecase(Mzp, Mzp, wp);
acb_sub(Mzp, Mzp, Mz, prec);
fmpz_neg(hexp, hexp);
acb_mul_2exp_fmpz(Mzp, Mzp, hexp);
if (isreal)
arb_add_error_mag(acb_realref(Mzp), err);
else
acb_add_error_mag(Mzp, err);
acb_set_round(Mz, Mz, prec);
fmpz_clear(hexp);
fmpz_clear(rexp);
mag_clear(err);
mag_clear(t);
}
/*
For input z + eps
First derivative bound: max(1, |z|+|eps|+r) / r
Second derivative bound: 2 max(1, |z|+|eps|+r) / r^2
This is assuming that the circle at z with radius |eps| + r
does not cross the negative half axis, which we check.
*/
void
2015-11-05 17:43:36 +00:00
acb_agm1_deriv_right(acb_t Mz, acb_t Mzp, const acb_t z, slong prec)
{
if (acb_is_exact(z))
{
acb_agm1_deriv_diff(Mz, Mzp, z, prec);
}
else
{
if (!acb_is_finite(z) || !acb_check_arg(z))
{
acb_indeterminate(Mz);
acb_indeterminate(Mzp);
}
else
{
acb_t t;
mag_t r, eps, err, one;
int isreal;
acb_init(t);
mag_init(r);
mag_init(err);
mag_init(one);
mag_init(eps);
isreal = acb_is_real(z) && arb_is_nonnegative(acb_realref(z));
mag_hypot(eps, arb_radref(acb_realref(z)), arb_radref(acb_imagref(z)));
/* choose r avoiding overlap with negative half axis */
if (arf_sgn(arb_midref(acb_realref(z))) < 0)
arb_get_mag_lower(r, acb_imagref(z));
else
acb_get_mag_lower(r, z);
mag_mul_2exp_si(r, r, -1);
if (mag_is_zero(r))
{
acb_indeterminate(Mz);
acb_indeterminate(Mzp);
}
else
{
acb_set(t, z);
mag_zero(arb_radref(acb_realref(t)));
mag_zero(arb_radref(acb_imagref(t)));
acb_get_mag(err, z);
mag_add(err, err, r);
mag_add(err, err, eps);
mag_one(one);
mag_max(err, err, one);
mag_mul(err, err, eps);
acb_agm1_deriv_diff(Mz, Mzp, t, prec);
mag_div(err, err, r);
if (isreal)
arb_add_error_mag(acb_realref(Mz), err);
else
acb_add_error_mag(Mz, err);
mag_div(err, err, r);
mag_mul_2exp_si(err, err, 1);
if (isreal)
arb_add_error_mag(acb_realref(Mzp), err);
else
acb_add_error_mag(Mzp, err);
}
acb_clear(t);
mag_clear(r);
mag_clear(err);
mag_clear(one);
mag_clear(eps);
}
}
}
void
2015-11-05 17:43:36 +00:00
acb_agm1(acb_t m, const acb_t z, slong prec)
{
if (arf_sgn(arb_midref(acb_realref(z))) >= 0)
{
acb_agm1_basecase(m, z, prec);
}
else
{
/* use M(z) = (z+1)/2 * M(2 sqrt(z) / (z+1)) */
acb_t t;
acb_init(t);
acb_add_ui(t, z, 1, prec);
acb_sqrt(m, z, prec);
acb_div(m, m, t, prec);
acb_mul_2exp_si(m, m, 1);
acb_agm1_basecase(m, m, prec);
acb_mul(m, m, t, prec);
acb_mul_2exp_si(m, m, -1);
acb_clear(t);
}
}
void
2015-11-05 17:43:36 +00:00
acb_agm1_deriv(acb_t Mz, acb_t Mzp, const acb_t z, slong prec)
{
/*
u = 2 sqrt(z) / (1+z)
Mz = (1+z) M(u) / 2
Mzp = [M(u) - (z-1) M'(u) / ((1+z) sqrt(z))] / 2
*/
if (arf_sgn(arb_midref(acb_realref(z))) >= 0)
{
acb_agm1_deriv_right(Mz, Mzp, z, prec);
}
else
{
acb_t t, u, zp1, zm1;
acb_init(t);
acb_init(u);
acb_init(zp1);
acb_init(zm1);
acb_sqrt(t, z, prec);
acb_add_ui(zp1, z, 1, prec);
acb_sub_ui(zm1, z, 1, prec);
acb_div(u, t, zp1, prec);
acb_mul_2exp_si(u, u, 1);
acb_agm1_deriv_right(Mz, Mzp, u, prec);
acb_mul(Mzp, Mzp, zm1, prec);
acb_mul(t, t, zp1, prec);
acb_div(Mzp, Mzp, t, prec);
acb_sub(Mzp, Mz, Mzp, prec);
acb_mul_2exp_si(Mzp, Mzp, -1);
acb_mul(Mz, Mz, zp1, prec);
acb_mul_2exp_si(Mz, Mz, -1);
acb_clear(t);
acb_clear(u);
acb_clear(zp1);
acb_clear(zm1);
}
}
void
2015-11-05 17:43:36 +00:00
acb_agm1_cpx(acb_ptr m, const acb_t z, slong len, slong prec)
{
if (len < 1)
return;
if (len == 1)
{
acb_agm1(m, z, prec);
return;
}
if (len == 2)
{
acb_agm1_deriv(m, m + 1, z, prec);
return;
}
if (len >= 3)
{
acb_t t, u, v;
acb_ptr w;
2015-11-05 17:43:36 +00:00
slong k, n;
acb_init(t);
acb_init(u);
acb_init(v);
w = _acb_vec_init(len);
acb_agm1_deriv(w, w + 1, z, prec);
/* invert series */
acb_inv(w, w, prec);
acb_mul(t, w, w, prec);
acb_mul(w + 1, w + 1, t, prec);
acb_neg(w + 1, w + 1);
if (acb_is_one(z))
{
for (k = 2; k < len; k++)
{
n = k - 2;
acb_mul_ui(w + k, w + n + 0, (n+1)*(n+1), prec);
acb_addmul_ui(w + k, w + n + 1, 7+3*n*(3+n), prec);
acb_div_ui(w + k, w + k, 2*(n+2)*(n+2), prec);
acb_neg(w + k, w + k);
}
}
else
{
/* t = 3z^2 - 1 */
/* u = -1 / (z^3 - z) */
acb_mul(t, z, z, prec);
acb_mul(u, t, z, prec);
acb_mul_ui(t, t, 3, prec);
acb_sub_ui(t, t, 1, prec);
acb_sub(u, u, z, prec);
acb_inv(u, u, prec);
acb_neg(u, u);
/* use differential equation for second derivative */
acb_mul(w + 2, z, w + 0, prec);
acb_addmul(w + 2, t, w + 1, prec);
acb_mul(w + 2, w + 2, u, prec);
acb_mul_2exp_si(w + 2, w + 2, -1);
/* recurrence */
for (k = 3; k < len; k++)
{
n = k - 3;
acb_mul_ui(w + k, w + n + 0, (n+1)*(n+1), prec);
acb_mul(v, w + n + 1, z, prec);
acb_addmul_ui(w + k, v, 7+3*n*(3+n), prec);
acb_mul(v, w + n + 2, t, prec);
acb_addmul_ui(w + k, v, (n+2)*(n+2), prec);
acb_mul(w + k, w + k, u, prec);
acb_div_ui(w + k, w + k, (n+2)*(n+3), prec);
}
}
/* invert series */
_acb_poly_inv_series(m, w, len, len, prec);
acb_clear(t);
acb_clear(u);
acb_clear(v);
_acb_vec_clear(w, len);
}
}