No description
Find a file
Fredrik Johansson 3388a63603
Merge pull request #324 from p15-git-acc/issue320
fix a zeta zeros issue
2020-09-06 09:04:28 +02:00
acb mp_bitcnt_t -> flint_bitcnt_t 2020-06-22 23:48:09 +02:00
acb_calc utility functions acb_sqrt_analytic, acb_rsqrt_analytic, acb_log_analytic, acb_pow_analytic, acb_real_sqrtpos; also improve bounds in acb_rsqrt 2018-02-23 00:21:01 +01:00
acb_dft fix unsafe shifts 2020-03-10 00:16:34 +01:00
acb_dirichlet fix a zeta zeros issue 2020-09-05 15:52:03 -05:00
acb_elliptic acb_elliptic_rj: use a slow fallback algorithm when Carlson's algorithm is not valid; this fixes instances where elliptic_pi or elliptic_rj previously ended up on the wrong branch 2020-03-23 21:20:10 +01:00
acb_hypgeom avoid asymptotic expansion for incomplete upper gamma under some conditions 2020-09-04 04:15:45 -05:00
acb_mat mp_bitcnt_t -> flint_bitcnt_t 2020-06-22 23:48:09 +02:00
acb_modular theta_series 2019-10-14 15:53:44 -04:00
acb_poly fix an inefficiency in hurwitz zeta in a special case 2020-03-23 16:53:04 +01:00
arb update docs; call this 2.18.1 2020-06-25 10:49:16 +02:00
arb_calc add arb_sgn_nonzero 2019-02-12 09:22:08 +01:00
arb_fmpz_poly tweak number of iterations in arb_fmpz_poly_complex_roots to avoid extreme slowdown for some polynomials with clustered roots 2020-04-27 16:57:36 +02:00
arb_hypgeom use flint versions of gmp ui functions 2020-06-23 13:43:00 +02:00
arb_mat mp_bitcnt_t -> flint_bitcnt_t 2020-06-22 23:48:09 +02:00
arb_poly move poly sinc pi to its own file 2019-08-16 12:11:09 -05:00
arf tmpfile checks: exclude mingw too 2020-06-23 13:48:42 +02:00
bernoulli Replace abort with flint_abort. 2017-02-28 16:52:57 +01:00
bool_mat Replace abort with flint_abort. 2017-02-28 16:52:57 +01:00
dirichlet fix unsafe shifts 2020-03-10 00:16:34 +01:00
dlog silence compiler warnings caused by flint_abort 2017-06-18 17:06:17 +02:00
doc fix a zeta zeros issue 2020-09-05 15:52:03 -05:00
examples add fransen robinson constant as an integral example 2020-09-02 15:08:26 -05:00
fmpr mp_bitcnt_t -> flint_bitcnt_t 2020-06-22 23:48:09 +02:00
fmpz_extras mp_bitcnt_t -> flint_bitcnt_t 2020-06-22 23:48:09 +02:00
hypgeom Replace abort with flint_abort. 2017-02-28 16:52:57 +01:00
mag tmpfile checks: exclude mingw too 2020-06-23 13:48:42 +02:00
partitions change long to slong in static function in hrr_sum_arb 2020-05-04 11:29:18 +02:00
.build_dependencies fix .build_dependencies to test flint 2.5 instead of flint trunk 2017-07-10 17:43:56 +02:00
.gitignore gitignore automake/libtool artifacts 2019-10-05 18:40:31 +02:00
.travis.yml Update .travis.yml 2018-02-10 16:33:46 -06:00
acb.h change long to slong in acb_fprintn 2020-05-04 11:19:09 +02:00
acb_calc.h minor improvements to integration code; change interface; more examples 2017-11-22 00:24:20 +01:00
acb_dft.h fix acb_dft_bluestein for length 0 2018-09-18 06:57:26 +02:00
acb_dirichlet.h Merge pull request #287 from p15-git-acc/platt_hardy_z_zeros 2019-09-05 19:54:33 +02:00
acb_elliptic.h acb_elliptic_rj: use a slow fallback algorithm when Carlson's algorithm is not valid; this fixes instances where elliptic_pi or elliptic_rj previously ended up on the wrong branch 2020-03-23 21:20:10 +01:00
acb_hypgeom.h real wrappers for Coulomb wave functions 2019-02-26 16:43:50 +01:00
acb_mat.h make matrix is_exact methods public 2018-12-05 12:33:03 +01:00
acb_modular.h theta_series 2019-10-14 15:53:44 -04:00
acb_poly.h Lambert W function of power series 2017-03-20 22:56:37 +01:00
appveyor.yml Add mingw tests back in 2020-06-22 16:51:18 -05:00
arb.h update docs; call this 2.18.1 2020-06-25 10:49:16 +02:00
arb_calc.h update copyright headers to switch from GPL to LGPL 2016-04-26 17:20:05 +02:00
arb_fmpz_poly.h missing C++ include guards 2018-02-09 21:52:34 +01:00
arb_hypgeom.h real wrappers for Coulomb wave functions 2019-02-26 16:43:50 +01:00
arb_mat.h make matrix is_exact methods public 2018-12-05 12:33:03 +01:00
arb_poly.h move poly sinc pi to its own file 2019-08-16 12:11:09 -05:00
arf.h mp_bitcnt_t -> flint_bitcnt_t 2020-06-22 23:48:09 +02:00
bernoulli.h update copyright headers to switch from GPL to LGPL 2016-04-26 17:20:05 +02:00
bool_mat.h Change flint_abort to abort only if flint > 2.5.2 2017-03-02 17:18:18 +01:00
CMakeLists.txt Fix Arb DLL name 2020-04-29 10:39:16 -05:00
configure update docs; call this 2.18.1 2020-06-25 10:49:16 +02:00
dirichlet.h use acb_dirichlet_roots_t in l_hurwitz and l_jet; rename dirichlet_number_primitive -> dirichlet_group_num_primitive 2016-12-01 22:33:15 +01:00
dlog.h missing C++ include guards 2018-02-09 21:52:34 +01:00
fmpr.h handle flint incompatibilities 2020-04-29 13:41:36 +02:00
fmpz_extras.h fallback for old flint 2020-06-23 00:15:11 +02:00
hypgeom.h update copyright headers to switch from GPL to LGPL 2016-04-26 17:20:05 +02:00
LICENSE replace gpl-2.0.txt with LICENSE = lgpl-2.1.txt 2016-04-26 17:24:23 +02:00
mag.h Add serialization arb/arf/mag_load/dump_str/file 2019-10-05 17:56:24 +02:00
Makefile.in merge and update some acb_dirichlet code 2017-09-18 18:20:47 +02:00
Makefile.subdirs Use LDFLAGS in tests 2020-01-02 17:55:40 +00:00
partitions.h update copyright headers to switch from GPL to LGPL 2016-04-26 17:20:05 +02:00
README.md update hilbert_matrix example program 2018-12-07 10:07:04 +01:00

Arb

Arb is a C library for arbitrary-precision interval arithmetic. It has full support for both real and complex numbers. The library is thread-safe, portable, and extensively tested. Arb is free software distributed under the GNU Lesser General Public License (LGPL), version 2.1 or later.

arb logo

Documentation: http://arblib.org

Development updates: http://fredrikj.net/blog/

Author: Fredrik Johansson fredrik.johansson@gmail.com

Bug reports, feature requests and other comments are welcome in private communication, on the GitHub issue tracker, or on the FLINT mailing list flint-devel@googlegroups.com.

Build Status

Code example

The following program evaluates sin(pi + exp(-10000)). Since the input to the sine function matches a root to within 4343 digits, at least 4343-digit (14427-bit) precision is needed to get an accurate result. The program repeats the evaluation at 64-bit, 128-bit, ... precision, stopping only when the result is accurate to at least 53 bits.

#include "arb.h"

int main()
{
    slong prec;
    arb_t x, y;
    arb_init(x); arb_init(y);

    for (prec = 64; ; prec *= 2)
    {
        arb_const_pi(x, prec);
        arb_set_si(y, -10000);
        arb_exp(y, y, prec);
        arb_add(x, x, y, prec);
        arb_sin(y, x, prec);
        arb_printn(y, 15, 0); printf("\n");
        if (arb_rel_accuracy_bits(y) >= 53)
            break;
    }

    arb_clear(x); arb_clear(y);
    flint_cleanup();
}

The output is:

[+/- 6.01e-19]
[+/- 2.55e-38]
[+/- 8.01e-77]
[+/- 8.64e-154]
[+/- 5.37e-308]
[+/- 3.63e-616]
[+/- 1.07e-1232]
[+/- 9.27e-2466]
[-1.13548386531474e-4343 +/- 3.91e-4358]

Each line shows a rigorous enclosure of the exact value of the expression. The program demonstrates how the user can rely on Arb's automatic error bound tracking to get an output that is guaranteed to be accurate -- no error analysis needs to be done by the user.

For more example programs, see: http://arblib.org/examples.html

Features

Besides basic arithmetic, Arb allows working with univariate polynomials, truncated power series, and matrices over both real and complex numbers.

Basic linear algebra is supported, including matrix multiplication, determinant, inverse, nonsingular solving, matrix exponential, and computation of eigenvalues and eigenvectors.

Support for polynomials and power series is quite extensive, including methods for composition, reversion, product trees, multipoint evaluation and interpolation, complex root isolation, and transcendental functions of power series.

Other features include root isolation for real functions, rigorous numerical integration of complex functions, and discrete Fourier transforms (DFTs).

Special functions

Arb can compute a wide range of transcendental and special functions, including the gamma function, polygamma functions, Riemann zeta and Hurwitz zeta function, Dirichlet L-functions, polylogarithm, error function, Gauss hypergeometric function 2F1, confluent hypergeometric functions, Bessel functions, Airy functions, Legendre functions and other orthogonal polynomials, exponential and trigonometric integrals, incomplete gamma and beta functions, Jacobi theta functions, modular functions, Weierstrass elliptic functions, complete and incomplete elliptic integrals, arithmetic-geometric mean, Bernoulli numbers, partition function, Barnes G-function, Lambert W function.

Speed

Arb uses a midpoint-radius (ball) representation of real numbers. At high precision, this allows doing interval arithmetic without significant overhead compared to plain floating-point arithmetic. Various low-level optimizations have also been implemented to reduce overhead at precisions of just a few machine words. Most operations on polynomials and power series use asymptotically fast FFT multiplication based on FLINT. Similarly, most operations on large matrices take advantage of the fast integer matrix multiplication in FLINT.

For basic arithmetic, Arb should generally be around as fast as MPFR (http://mpfr.org), though it can be a bit slower at low precision, and around twice as fast as MPFI (https://perso.ens-lyon.fr/nathalie.revol/software.html).

Transcendental functions in Arb are quite well optimized and should generally be faster than any other arbitrary-precision software currently available. The following table compares the time in seconds to evaluate the Gauss hypergeometric function 2F1(1/2, 1/4, 1, z) at the complex number z = 5^(1/2) + 7^(1/2)i, to a given number of decimal digits (Arb 2.8-git and mpmath 0.19 on an 1.90 GHz Intel i5-4300U, Mathematica 9.0 on a 3.07 GHz Intel Xeon X5675).

Digits Mathematica mpmath Arb
10 0.00066 0.00065 0.000071
100 0.0039 0.0012 0.00048
1000 0.23 1.2 0.0093
10000 42.6 84 0.56

Dependencies, installation, and interfaces

Arb depends on FLINT (http://flintlib.org/), either GMP (http://gmplib.org) or MPIR (http://mpir.org), and MPFR (http://mpfr.org).

See http://arblib.org/setup.html for instructions on building and installing Arb directly from the source code. Arb might also be available (or coming soon) as a package for your Linux distribution.

SageMath (http://sagemath.org/) includes Arb as a standard package and contains a high-level Python interface. See the SageMath documentation for RealBallField (http://doc.sagemath.org/html/en/reference/rings_numerical/sage/rings/real_arb.html) and ComplexBallField (http://doc.sagemath.org/html/en/reference/rings_numerical/sage/rings/complex_arb.html).

Nemo (http://nemocas.org/) is a computer algebra package for the Julia programming language which includes a high-level Julia interface to Arb. The Nemo installation script will create a local installation of Arb along with other dependencies.

A standalone Python interface to FLINT and Arb is also available (https://github.com/fredrik-johansson/python-flint).

A separate wrapper of transcendental functions for use with the C99 complex double type is available (https://github.com/fredrik-johansson/arbcmath).

Other third-party wrappers include: