mirror of
https://github.com/vale981/arb
synced 2025-03-04 08:51:40 -05:00
theta_series
This commit is contained in:
parent
af1c32f412
commit
bcf76d07ac
4 changed files with 225 additions and 0 deletions
|
@ -15,6 +15,7 @@
|
|||
#include <stdio.h>
|
||||
#include "flint/fmpz_poly.h"
|
||||
#include "acb.h"
|
||||
#include "acb_poly.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
@ -162,6 +163,13 @@ void acb_modular_theta_jet(acb_ptr theta1, acb_ptr theta2,
|
|||
acb_ptr theta3, acb_ptr theta4, const acb_t z, const acb_t tau,
|
||||
slong len, slong prec);
|
||||
|
||||
void _acb_modular_theta_series(acb_ptr theta1, acb_ptr theta2, acb_ptr theta3, acb_ptr theta4,
|
||||
acb_srcptr z, slong zlen, const acb_t tau, slong len, slong prec);
|
||||
|
||||
void acb_modular_theta_series(acb_poly_t theta1, acb_poly_t theta2,
|
||||
acb_poly_t theta3, acb_poly_t theta4, const acb_poly_t z, const acb_t tau,
|
||||
slong len, slong prec);
|
||||
|
||||
void acb_modular_j(acb_t z, const acb_t tau, slong prec);
|
||||
|
||||
int acb_modular_epsilon_arg(const psl2z_t g);
|
||||
|
|
102
acb_modular/test/t-theta_series.c
Normal file
102
acb_modular/test/t-theta_series.c
Normal file
|
@ -0,0 +1,102 @@
|
|||
/*
|
||||
Copyright (C) 2019 Fredrik Johansson
|
||||
|
||||
This file is part of Arb.
|
||||
|
||||
Arb is free software: you can redistribute it and/or modify it under
|
||||
the terms of the GNU Lesser General Public License (LGPL) as published
|
||||
by the Free Software Foundation; either version 2.1 of the License, or
|
||||
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "acb_modular.h"
|
||||
|
||||
int main()
|
||||
{
|
||||
slong iter;
|
||||
flint_rand_t state;
|
||||
|
||||
flint_printf("theta_series....");
|
||||
fflush(stdout);
|
||||
|
||||
flint_randinit(state);
|
||||
|
||||
for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
|
||||
{
|
||||
acb_poly_t t1, t2, t3, t4, t1b, t2b, t3b, t4b, z;
|
||||
acb_t tau;
|
||||
slong len1, len2, prec1, prec2;
|
||||
unsigned int mask;
|
||||
|
||||
acb_poly_init(t1); acb_poly_init(t1b);
|
||||
acb_poly_init(t2); acb_poly_init(t2b);
|
||||
acb_poly_init(t3); acb_poly_init(t3b);
|
||||
acb_poly_init(t4); acb_poly_init(t4b);
|
||||
acb_poly_init(z);
|
||||
acb_init(tau);
|
||||
|
||||
prec1 = 2 + n_randint(state, 300);
|
||||
prec2 = 2 + n_randint(state, 300);
|
||||
|
||||
len1 = n_randint(state, 6);
|
||||
len2 = n_randint(state, 6);
|
||||
|
||||
acb_poly_randtest(t1, state, 10, prec1, 10);
|
||||
acb_poly_randtest(t2, state, 10, prec1, 10);
|
||||
acb_poly_randtest(t3, state, 10, prec1, 10);
|
||||
acb_poly_randtest(t4, state, 10, prec1, 10);
|
||||
acb_poly_randtest(z, state, 1 + n_randint(state, 10), prec1, 10);
|
||||
acb_randtest(tau, state, prec1, 10);
|
||||
|
||||
acb_modular_theta_series(t1, t2, t3, t4, z, tau, len1, prec1);
|
||||
|
||||
mask = n_randlimb(state);
|
||||
|
||||
acb_modular_theta_series((mask & 1) ? t1b : NULL,
|
||||
(mask & 2) ? t2b : NULL,
|
||||
(mask & 4) ? t3b : NULL,
|
||||
(mask & 8) ? t4b : NULL, z, tau, len2, prec2);
|
||||
|
||||
acb_poly_truncate(t1, FLINT_MIN(len1, len2));
|
||||
acb_poly_truncate(t1b, FLINT_MIN(len1, len2));
|
||||
acb_poly_truncate(t2, FLINT_MIN(len1, len2));
|
||||
acb_poly_truncate(t2b, FLINT_MIN(len1, len2));
|
||||
acb_poly_truncate(t3, FLINT_MIN(len1, len2));
|
||||
acb_poly_truncate(t3b, FLINT_MIN(len1, len2));
|
||||
acb_poly_truncate(t4, FLINT_MIN(len1, len2));
|
||||
acb_poly_truncate(t4b, FLINT_MIN(len1, len2));
|
||||
|
||||
if (((mask & 1) && (!acb_poly_overlaps(t1, t1b))) ||
|
||||
((mask & 2) && (!acb_poly_overlaps(t2, t2b))) ||
|
||||
((mask & 4) && (!acb_poly_overlaps(t3, t3b))) ||
|
||||
((mask & 8) && (!acb_poly_overlaps(t4, t4b))))
|
||||
{
|
||||
flint_printf("FAIL: consistency (mask)\n\n");
|
||||
flint_printf("mask = %u\n\n", mask);
|
||||
flint_printf("len1 = %wd, len2 = %wd\n\n", len1, len2);
|
||||
flint_printf("z = "); acb_poly_printd(z, 30); flint_printf("\n\n");
|
||||
flint_printf("tau = "); acb_printd(tau, 30); flint_printf("\n\n");
|
||||
flint_printf("t1 = "); acb_poly_printd(t1, 30); flint_printf("\n\n");
|
||||
flint_printf("t1b = "); acb_poly_printd(t1b, 30); flint_printf("\n\n");
|
||||
flint_printf("t2 = "); acb_poly_printd(t2, 30); flint_printf("\n\n");
|
||||
flint_printf("t2b = "); acb_poly_printd(t2b, 30); flint_printf("\n\n");
|
||||
flint_printf("t3 = "); acb_poly_printd(t3, 30); flint_printf("\n\n");
|
||||
flint_printf("t3b = "); acb_poly_printd(t3b, 30); flint_printf("\n\n");
|
||||
flint_printf("t4 = "); acb_poly_printd(t4, 30); flint_printf("\n\n");
|
||||
flint_printf("t4b = "); acb_poly_printd(t4b, 30); flint_printf("\n\n");
|
||||
flint_abort();
|
||||
}
|
||||
|
||||
acb_poly_clear(t1); acb_poly_clear(t1b);
|
||||
acb_poly_clear(t2); acb_poly_clear(t2b);
|
||||
acb_poly_clear(t3); acb_poly_clear(t3b);
|
||||
acb_poly_clear(t4); acb_poly_clear(t4b);
|
||||
acb_poly_clear(z); acb_clear(tau);
|
||||
}
|
||||
|
||||
flint_randclear(state);
|
||||
flint_cleanup();
|
||||
flint_printf("PASS\n");
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
107
acb_modular/theta_series.c
Normal file
107
acb_modular/theta_series.c
Normal file
|
@ -0,0 +1,107 @@
|
|||
/*
|
||||
Copyright (C) 2019 Fredrik Johansson
|
||||
|
||||
This file is part of Arb.
|
||||
|
||||
Arb is free software: you can redistribute it and/or modify it under
|
||||
the terms of the GNU Lesser General Public License (LGPL) as published
|
||||
by the Free Software Foundation; either version 2.1 of the License, or
|
||||
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "acb_modular.h"
|
||||
|
||||
void
|
||||
_acb_modular_theta_series(acb_ptr theta1, acb_ptr theta2, acb_ptr theta3, acb_ptr theta4,
|
||||
acb_srcptr z, slong zlen, const acb_t tau, slong len, slong prec)
|
||||
{
|
||||
acb_ptr t1, t2, t3, t4, t, v;
|
||||
|
||||
zlen = FLINT_MIN(zlen, len);
|
||||
|
||||
if (zlen <= 0)
|
||||
return;
|
||||
|
||||
t = _acb_vec_init(4 * len);
|
||||
t1 = t;
|
||||
t2 = t1 + len;
|
||||
t3 = t2 + len;
|
||||
t4 = t3 + len;
|
||||
|
||||
acb_modular_theta_jet(t1, t2, t3, t4, z, tau, len, prec);
|
||||
|
||||
if (len == 1)
|
||||
{
|
||||
if (theta1 != NULL) acb_set(theta1, t1);
|
||||
if (theta2 != NULL) acb_set(theta2, t2);
|
||||
if (theta3 != NULL) acb_set(theta3, t3);
|
||||
if (theta4 != NULL) acb_set(theta4, t4);
|
||||
}
|
||||
else
|
||||
{
|
||||
v = _acb_vec_init(zlen);
|
||||
|
||||
/* compose with nonconstant part */
|
||||
acb_zero(v);
|
||||
_acb_vec_set(v + 1, z + 1, zlen - 1);
|
||||
|
||||
if (theta1 != NULL) _acb_poly_compose_series(theta1, t1, len, v, zlen, len, prec);
|
||||
if (theta2 != NULL) _acb_poly_compose_series(theta2, t2, len, v, zlen, len, prec);
|
||||
if (theta3 != NULL) _acb_poly_compose_series(theta3, t3, len, v, zlen, len, prec);
|
||||
if (theta4 != NULL) _acb_poly_compose_series(theta4, t4, len, v, zlen, len, prec);
|
||||
|
||||
_acb_vec_clear(v, zlen);
|
||||
}
|
||||
|
||||
_acb_vec_clear(t, 4 * len);
|
||||
}
|
||||
|
||||
void
|
||||
acb_modular_theta_series(acb_poly_t theta1, acb_poly_t theta2,
|
||||
acb_poly_t theta3, acb_poly_t theta4, const acb_poly_t z, const acb_t tau,
|
||||
slong len, slong prec)
|
||||
{
|
||||
if (len == 0)
|
||||
{
|
||||
if (theta1 != NULL) acb_poly_zero(theta1);
|
||||
if (theta2 != NULL) acb_poly_zero(theta2);
|
||||
if (theta3 != NULL) acb_poly_zero(theta3);
|
||||
if (theta4 != NULL) acb_poly_zero(theta4);
|
||||
return;
|
||||
}
|
||||
|
||||
if (z->length <= 1)
|
||||
len = 1;
|
||||
|
||||
if (theta1 != NULL) acb_poly_fit_length(theta1, len);
|
||||
if (theta2 != NULL) acb_poly_fit_length(theta2, len);
|
||||
if (theta3 != NULL) acb_poly_fit_length(theta3, len);
|
||||
if (theta4 != NULL) acb_poly_fit_length(theta4, len);
|
||||
|
||||
if (z->length == 0)
|
||||
{
|
||||
acb_t t;
|
||||
acb_init(t);
|
||||
_acb_modular_theta_series(theta1 ? theta1->coeffs : NULL,
|
||||
theta2 ? theta2->coeffs : NULL, theta3 ? theta3->coeffs : NULL,
|
||||
theta4 ? theta4->coeffs : NULL, t, 1, tau, len, prec);
|
||||
acb_clear(t);
|
||||
}
|
||||
else
|
||||
{
|
||||
_acb_modular_theta_series(theta1 ? theta1->coeffs : NULL,
|
||||
theta2 ? theta2->coeffs : NULL, theta3 ? theta3->coeffs : NULL,
|
||||
theta4 ? theta4->coeffs : NULL, z->coeffs, z->length, tau, len, prec);
|
||||
}
|
||||
|
||||
if (theta1 != NULL) _acb_poly_set_length(theta1, len);
|
||||
if (theta2 != NULL) _acb_poly_set_length(theta2, len);
|
||||
if (theta3 != NULL) _acb_poly_set_length(theta3, len);
|
||||
if (theta4 != NULL) _acb_poly_set_length(theta4, len);
|
||||
|
||||
if (theta1 != NULL) _acb_poly_normalise(theta1);
|
||||
if (theta2 != NULL) _acb_poly_normalise(theta2);
|
||||
if (theta3 != NULL) _acb_poly_normalise(theta3);
|
||||
if (theta4 != NULL) _acb_poly_normalise(theta4);
|
||||
}
|
||||
|
|
@ -440,6 +440,14 @@ To avoid confusion, we only write `q^k` when `k` is an integer.
|
|||
each respective output variable. The *notransform* version does not
|
||||
move `\tau` to the fundamental domain or reduce `z` during the computation.
|
||||
|
||||
.. function:: void _acb_modular_theta_series(acb_ptr theta1, acb_ptr theta2, acb_ptr theta3, acb_ptr theta4, acb_srcptr z, slong zlen, const acb_t tau, slong len, slong prec)
|
||||
|
||||
.. function:: void acb_modular_theta_series(acb_poly_t theta1, acb_poly_t theta2, acb_poly_t theta3, acb_poly_t theta4, const acb_poly_t z, const acb_t tau, slong len, slong prec)
|
||||
|
||||
Evaluates the respective Jacobi theta functions of the power series *z*,
|
||||
truncated to length *len*. Either of the output variables can be *NULL*.
|
||||
|
||||
|
||||
Dedekind eta function
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue