mirror of
https://github.com/vale981/arb
synced 2025-03-05 09:21:38 -05:00
238 lines
6.6 KiB
C
238 lines
6.6 KiB
C
/*
|
|
Copyright (C) 2018 Fredrik Johansson
|
|
|
|
This file is part of Arb.
|
|
|
|
Arb is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version. See <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "acb_mat.h"
|
|
|
|
int main()
|
|
{
|
|
slong iter;
|
|
flint_rand_t state;
|
|
|
|
flint_printf("eig_multiple....");
|
|
fflush(stdout);
|
|
|
|
flint_randinit(state);
|
|
|
|
for (iter = 0; iter < 3000 * arb_test_multiplier(); iter++)
|
|
{
|
|
acb_mat_t A, R;
|
|
acb_ptr E, F;
|
|
acb_t b;
|
|
slong i, j, n, prec, count, count2;
|
|
int result;
|
|
|
|
n = n_randint(state, 8);
|
|
prec = 2 + n_randint(state, 200);
|
|
|
|
acb_init(b);
|
|
acb_mat_init(A, n, n);
|
|
acb_mat_init(R, n, n);
|
|
E = _acb_vec_init(n);
|
|
F = _acb_vec_init(n);
|
|
|
|
if (n_randint(state, 10) != 0)
|
|
{
|
|
for (i = 0; i < n; i++)
|
|
acb_randtest(E + i, state, prec, 2);
|
|
}
|
|
else
|
|
{
|
|
/* Randomly repeat eigenvalues. */
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if (i == 0 || n_randint(state, 2))
|
|
acb_randtest(E + i, state, prec, 2);
|
|
else
|
|
acb_set(E + i, E + n_randint(state, i));
|
|
}
|
|
}
|
|
|
|
if (n_randint(state, 2))
|
|
{
|
|
for (i = 0; i < n; i++)
|
|
acb_get_mid(E + i, E + i);
|
|
}
|
|
|
|
acb_mat_randtest_eig(A, state, E, prec);
|
|
acb_mat_approx_eig_qr(F, NULL, R, A, NULL, 0, prec);
|
|
|
|
/* Perturb F further. */
|
|
if (n_randint(state, 10) == 0)
|
|
{
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
acb_randtest(b, state, prec, 1);
|
|
acb_mul_2exp_si(b, b, -n_randint(state, prec));
|
|
acb_add(F + i, F + i, b, prec);
|
|
}
|
|
}
|
|
|
|
/* Perturb R further. */
|
|
if (n_randint(state, 10) == 0)
|
|
{
|
|
j = n_randint(state, n);
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
acb_randtest(b, state, prec, 1);
|
|
acb_mul_2exp_si(b, b, -10 - n_randint(state, prec));
|
|
acb_add(acb_mat_entry(R, i, j), acb_mat_entry(R, i, j), b, prec);
|
|
}
|
|
}
|
|
|
|
if (n_randint(state, 2))
|
|
result = acb_mat_eig_multiple_rump(F, A, E, R, prec);
|
|
else
|
|
result = acb_mat_eig_multiple(F, A, E, R, prec);
|
|
|
|
if (result)
|
|
{
|
|
count = 0;
|
|
count2 = 0;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
if (j == 0 || !acb_equal(F + j, F + j - 1))
|
|
count += acb_contains(F + j, E + i);
|
|
}
|
|
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
if (j == 0 || !acb_equal(F + j, F + j - 1))
|
|
count2 += acb_overlaps(F + j, E + i);
|
|
}
|
|
}
|
|
|
|
if (count != n || count2 != n)
|
|
{
|
|
flint_printf("FAIL: count\n\n");
|
|
flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n");
|
|
flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n");
|
|
flint_printf("count = %wd, count2 = %wd\n\n", count, count2);
|
|
flint_printf("E = \n");
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
acb_printd(E + j, 20);
|
|
flint_printf("\n");
|
|
}
|
|
flint_printf("F = \n");
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
acb_printd(F + j, 20);
|
|
flint_printf("\n");
|
|
}
|
|
flint_abort();
|
|
}
|
|
}
|
|
|
|
acb_mat_clear(A);
|
|
acb_mat_clear(R);
|
|
_acb_vec_clear(E, n);
|
|
_acb_vec_clear(F, n);
|
|
acb_clear(b);
|
|
}
|
|
|
|
/* Test convergence for DFT matrices */
|
|
for (iter = 0; iter < 50 * arb_test_multiplier(); iter++)
|
|
{
|
|
acb_mat_t A, R, QC;
|
|
acb_ptr E;
|
|
acb_t t;
|
|
fmpq_mat_t Q, Qinv;
|
|
slong i, n, c0, c1, c2, c3;
|
|
slong prec;
|
|
int algorithm, result;
|
|
|
|
n = n_randint(state, 30);
|
|
algorithm = n_randint(state, 2);
|
|
acb_mat_init(A, n, n);
|
|
acb_mat_init(R, n, n);
|
|
E = _acb_vec_init(n);
|
|
acb_init(t);
|
|
acb_mat_init(QC, n, n);
|
|
fmpq_mat_init(Q, n, n);
|
|
fmpq_mat_init(Qinv, n, n);
|
|
|
|
/* The current algorithm is not robust enough. */
|
|
#if 0
|
|
do {
|
|
fmpq_mat_randtest(Q, state, 2 + n_randint(state, 10));
|
|
} while (!fmpq_mat_inv(Qinv, Q));
|
|
#else
|
|
fmpq_mat_one(Q);
|
|
fmpq_mat_one(Qinv);
|
|
#endif
|
|
|
|
for (prec = 32; ; prec *= 2)
|
|
{
|
|
if (prec > 10000)
|
|
{
|
|
flint_printf("FAIL: unsuccessful, prec > 10000\n\n");
|
|
flint_printf("algorithm = %d, iter %wd\n\n", algorithm, iter);
|
|
flint_abort();
|
|
}
|
|
|
|
acb_mat_dft(A, 0, prec);
|
|
|
|
#if 0
|
|
acb_mat_set_fmpq_mat(QC, Q, prec);
|
|
acb_mat_mul(A, A, QC, prec);
|
|
acb_mat_set_fmpq_mat(QC, Qinv, prec);
|
|
acb_mat_mul(A, QC, A, prec);
|
|
#endif
|
|
|
|
acb_mat_approx_eig_qr(E, NULL, R, A, NULL, 0, prec);
|
|
|
|
if (algorithm == 0)
|
|
result = acb_mat_eig_multiple_rump(E, A, E, R, prec);
|
|
else
|
|
result = acb_mat_eig_multiple(E, A, E, R, prec);
|
|
|
|
/* Verify the known eigenvalues + multiplicities */
|
|
if (result)
|
|
{
|
|
c0 = c1 = c2 = c3 = 0;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
acb_set_d_d(t, 1.0, 0.0);
|
|
c0 += acb_contains(E + i, t);
|
|
acb_set_d_d(t, -1.0, 0.0);
|
|
c1 += acb_contains(E + i, t);
|
|
acb_set_d_d(t, 0.0, 1.0);
|
|
c2 += acb_contains(E + i, t);
|
|
acb_set_d_d(t, 0.0, -1.0);
|
|
c3 += acb_contains(E + i, t);
|
|
}
|
|
|
|
result = (n == 0 || (c0 == (n+4)/4 && c1 == (n+2)/4 && c2 == (n-1)/4 && c3 == (n+1)/4));
|
|
}
|
|
|
|
if (result)
|
|
break;
|
|
}
|
|
|
|
acb_mat_clear(A);
|
|
acb_mat_clear(R);
|
|
acb_mat_clear(QC);
|
|
_acb_vec_clear(E, n);
|
|
acb_clear(t);
|
|
fmpq_mat_clear(Q);
|
|
fmpq_mat_clear(Qinv);
|
|
}
|
|
|
|
flint_randclear(state);
|
|
flint_cleanup();
|
|
flint_printf("PASS\n");
|
|
return EXIT_SUCCESS;
|
|
}
|