r"""HOPS Configurations for a simple qubit otto cycle.""" import math from dataclasses import dataclass, field from typing import SupportsFloat, Union import numpy as np import qutip as qt import scipy.optimize from beartype import beartype, BeartypeConf from scipy.optimize import minimize_scalar from hops.util.dynamic_matrix import ( DynamicMatrix, ConstantMatrix, SmoothStep, Periodic, MatrixType, Shift, ) from .one_qubit_model import QubitModelMutliBath from .utility import linspace_with_strobe, strobe_times from numpy.typing import ArrayLike, NDArray from typing import Optional from hops.core.hierarchy_data import HIData from hopsflow.util import EnsembleValue Timings = tuple[float, float, float, float] Orders = tuple[int, int] class SmoothlyInterpolatdPeriodicMatrix(DynamicMatrix): """A periodic dynamic matrix that smoothly interpolates between two matrices using :any:`SmoothStep`. :param matrices: The two matrices ``M1`` and ``M2`` to interpolate between. :param timings: A tuple that contains the times (relative to the period) when the transition from ``M1`` to ``M2`` begins, when it ends and when the reverse transition begins and when it ends. :param period: The period of the modulation. :param orders: The orders of the smoothstep functions that are being used. See also :any:`SmoothStep`. :param amplitudes: The amplitudes of the modulation. :param deriv: The order of derivative of the matrix. """ def __init__( self, matrices: tuple[Union[ArrayLike, list[list]], Union[ArrayLike, list[list]]], timings: Timings, period: float, orders: tuple = (2, 2), amplitudes: tuple[float, float] = (1, 1), deriv: int = 0, ): self._matrices = matrices self._timings = timings self._period = period self._orders = orders self._amplitudes = amplitudes self._deriv = deriv M_1, M_2 = matrices s_1, s_2 = orders a_1, a_2 = amplitudes one_cycle: DynamicMatrix = a_1 * ( (ConstantMatrix(M_1) if deriv == 0 else ConstantMatrix(np.zeros_like(M_1))) ) if a_1 != 0: one_cycle += a_1 * ( SmoothStep( M_1, timings[2] * period, timings[3] * period, s_2, deriv=deriv ) - SmoothStep( M_1, timings[0] * period, timings[1] * period, s_1, deriv=deriv ) ) if a_2 != 0: one_cycle += a_2 * ( SmoothStep( M_2, timings[0] * period, timings[1] * period, s_1, deriv=deriv ) - SmoothStep( M_2, timings[2] * period, timings[3] * period, s_2, deriv=deriv ) ) self._m = Periodic(one_cycle, period) def call(self, t: NDArray[np.float64]) -> MatrixType: return self._m.call(t) def derivative(self): return self.__class__( matrices=self._matrices, timings=self._timings, period=self._period, orders=self._orders, amplitudes=self._amplitudes, deriv=self._deriv + 1, ) def __getstate__(self): return dict( matrices=self._matrices, timings=self._timings, period=self._period, orders=self._orders, amplitudes=self._amplitudes, deriv=self._deriv, ) @beartype(conf=BeartypeConf(is_pep484_tower=True)) @dataclass(eq=False) class OttoEngine(QubitModelMutliBath): r""" A class to dynamically calculate all the otto motor model parameters and generate the HOPS configuration. Uses :any:`one_qubit_model.QubitModelMultiBath` internally. All attributes can be changed after initialization. The bath correlation functions are normalized, so that their corresponding thermal SDs are of the same magnitude at the resonance frequencies. """ __version__: int = 1 H_0: np.ndarray = field( default_factory=lambda: 1 / 2 * (qt.sigmaz().full() + np.eye(2)) # type: ignore ) """ The :math:`H_0` system hamiltonian with shape ``(2, 2)``. It will get shifted and normalized so that its smallest eigenvalue is zero and its largest one is one. """ H_1: np.ndarray = field( default_factory=lambda: 1 / 2 * (qt.sigmaz().full() + np.eye(2)) # type: ignore ) """ The :math:`H_1` shape ``(2, 2)``. It will get shifted and normalized so that its smallest eigenvalue is zero and its largest one is one. """ H_bias: DynamicMatrix = field(default_factory=lambda: ConstantMatrix(np.zeros((2, 2)))) # type: ignore """ The :math:`H_B` shape ``(2, 2)``. This bias will be added to the system Hamiltonian unaltered. """ normalize_bias: bool = False """ Whether to normalize the total Hamiltonian in the presence of a bias so that the energy gaps of the Hamiltonian take on the specified values. """ L: tuple[np.ndarray, np.ndarray] = field( default_factory=lambda: tuple([(1 / 2 * (qt.sigmax().full())), (1 / 2 * (qt.sigmax().full()))]) # type: ignore ) """The bare coupling operators to the two baths.""" ω_s_extra: list[float] = field(default_factory=lambda: [0] * 2) """ The shift frequencies :math:`ω_s` applied on top of the automatic shift. """ ########################################################################### # Cycle Settings # ########################################################################### Θ: float = 1 """The period of the modulation.""" Δ: float = 1 """The expansion ratio of the modulation.""" timings_H: Timings = field(default_factory=lambda: (0, 0.1, 0.5, 0.6)) """The timings for the ``H`` modulation. See :any:`SmoothlyInterpolatdPeriodicMatrix`.""" orders_H: Orders = field(default_factory=lambda: (2, 2)) """The smoothness of the modulation of ``H``.""" timings_L: tuple[Optional[Timings], Optional[Timings]] = field( default_factory=lambda: ((0.6, 0.7, 0.9, 1), (0.1, 0.2, 0.4, 0.5)) ) """ The timings for the ``L`` modulation. See :any:`SmoothlyInterpolatdPeriodicMatrix`. If no timing is given, modulation is disabled. """ L_shift: tuple[float, float] = field(default_factory=lambda: (0, 0)) """The time shift of the ``L`` modulation.""" orders_L: tuple[Orders, Orders] = field(default_factory=lambda: ((2, 2), (2, 2))) """The smoothness of the modulation of ``L``.""" num_cycles: int = 1 """How many cycles to simulate.""" dt: float = 0.001 """The time resolution relative to the period of modulation.""" shift_to_resonance: tuple[bool, bool] = field(default_factory=lambda: (True, True)) """Whether to to shift the spectral densities to the resonance point.""" @property def τ_max(self) -> float: """The maximum simulation time.""" return self.num_cycles * self.Θ @property def t(self) -> NDArray[np.float64]: """The simulation time.""" return linspace_with_strobe( 0, self.τ_max, int(self.τ_max // (self.dt * self.Θ)) + 1, self.Ω, ) @property def strobe(self): """ Returns a tuple with the times where a cycle is complete and their corresponding indices. """ times = np.arange(self.num_cycles + 1) * self.Θ indices = np.searchsorted( self.t, (np.arange(self.num_cycles + 1) * 2 * np.pi / self.Ω) ) return times, indices @t.setter def t(self, _): pass @property def ω_s(self) -> list[float]: """ The frequency shifts of the spectral density. Calculated so that the effective thermal SD has maximum magnitude at the resonance frequencies of the hamiltonian. :any:`ω_s_extra` is added to those values. """ return [ extra + ((gap - float(ω_c) * float(s)) if do_shift else 0) for ω_c, s, gap, extra, do_shift in zip( self.ω_c, self.s, self.energy_gaps, self.ω_s_extra, self.shift_to_resonance, ) ] # super_instance = QubitModelMutliBath(ω_c=self.ω_c, s=self.s, T=self.T) # def objective(ω_s, ω_exp, i): # super_instance.ω_s[i] = ω_s # return -super_instance.full_thermal_spectral_density(i)(ω_exp) # ω_s = [ω for ω in self.ω_s_extra] # ω_exps = self.energy_gaps # for i, shift in enumerate(self.ω_s_extra): # res = minimize_scalar( # objective, # 1, # method="bounded", # bounds=(0.01, ω_exps[i]), # options=dict(maxiter=100), # args=(ω_exps[i], i), # ) # if not res.success: # raise RuntimeError("Cannot optimize SD shift.") # ω_s[i] = shift + round(res.x, number_magnitude(ω_exps[i]) + 3) # return ω_s @ω_s.setter def ω_s(self, _): pass @property def energy_gaps(self) -> tuple[float, float]: """ The energy gaps of the working medium in compressed and expanded state. """ return tuple( sorted( ( get_energy_gap(self.H(0)), get_energy_gap(self.H(self.τ_expansion_finished)), ) ) ) @property def τ_expansion_finished(self): """Time when the working medium is fully expanded.""" return self.timings_H[1] * self.Θ @property def τ_compressed(self): """Time when the working medium is fully copressed.""" return 0 @property def bcf_scales(self) -> list[float]: gaps = self.energy_gaps return [ float(δ) / float(self.full_thermal_spectral_density(i)(gap)) for (i, gap), δ in zip(enumerate(gaps), self.δ) ] @property def H(self) -> DynamicMatrix: r""" Returns the modulated system Hamiltonian. The system Hamiltonian will always be :math:`ω_{\max} * H_1 + (ω_{\max} - ω_{\min}) * f(τ) * H_1` where ``H_0`` is a fixed matrix and :math:`f(τ)` models the time dependence. The time dependence is implemented via :any:`SmoothlyInterpolatdPeriodicMatrix` and leads to a modulation of the levelspacing between ``ε_min=1`` and ``ε_max`` so that ``ε_max/ε_min - 1 = Δ``. The modulation is cyclical with period :any:`Θ`. """ Hs = tuple(normalize_hamiltonian(H) for H in (self.H_0, self.H_1)) H_bias = self.H_bias compression_factor = 1 expansion_factor = self.Δ + 1 if self.normalize_bias: compression_factor = round( scipy.optimize.minimize_scalar( lambda s: (get_energy_gap(Hs[0] * s + H_bias(0)) - 1) ** 2, tol=1e-6 ).x, 4, ) expansion_factor = round( scipy.optimize.minimize_scalar( lambda s: (get_energy_gap(Hs[1] * s + H_bias(0)) - (1 + self.Δ)) ** 2, tol=1e-6, ).x, 4, ) return ( SmoothlyInterpolatdPeriodicMatrix( Hs, self.timings_H, self.Θ, self.orders_H, (compression_factor, expansion_factor), ) + self.H_bias ) # we black-hole the H setter in this model @H.setter def H(self, _): pass @property def coupling_operators(self) -> list[DynamicMatrix]: return [ Shift( ConstantMatrix(L_i) if timings is None else SmoothlyInterpolatdPeriodicMatrix( (np.zeros_like(L_i), L_i), timings, self.Θ, orders, (0, 1), ), shift * self.Θ, ) for L_i, timings, orders, shift in zip( self.L, self.timings_L, self.orders_L, self.L_shift ) ] @property def Ω(self) -> float: """The modulation base angular frequency.""" return 2 * np.pi / self.Θ # @property # def qubit_model(self) -> QubitModelMutliBath: # """Returns the underlying Qubit model.""" # return QubitModelMutliBath( # δ=self.δ, # ω_c=self.ω_c, # ω_s=self.ω_s, # t=self.t, # ψ_0=self.ψ_0, # description=f"The qubit model underlying the otto cycle with description: {self.description}.", # truncation_scheme="simplex", # k_max=self.k_max, # bcf_terms=self.bcf_terms, # driving_process_tolerances=self.driving_process_tolerances, # thermal_process_tolerances=self.thermal_process_tolerances, # T=self.T, # L=self.L, # H=self.H, # therm_methods=self.therm_methods, # ) def steady_index( self, fraction: Optional[float] = None, observable: Optional[EnsembleValue] = None, data: Optional[HIData] = None, **kwargs ): """ Determine using the system energy or the ``observable`` (``data`` and ``kwargs`` are being passed to :any:`system_energy`) when the periodic steady state has been reached. This is being done by comparing the change of the observable to the next cycle and finding the time where it is compatible with its value in the next cycle in the ``fraction`` of cases. The default value for ``fraction`` is ``0.68`` (one sigma). """ _, indices = self.strobe fraction = fraction or 0.68 observable = observable or self.system_energy(data, **kwargs) cycles = [ observable.slice(slice(begin, end)) for end, begin in zip(indices[1:], indices[:-1]) ] consistency = np.array( [ nxt.consistency(this) / 100 > fraction for nxt, this in zip(cycles[1:], cycles[:-1]) ] ) if sum(consistency) == 0: return None return np.argmax(consistency) + 1 def get_steady_values(self, value: EnsembleValue, steady_idx: int, *args, **kwargs): """ Get the value of ``value`` at the steady state indices. For the rest arguments sse :any:`steady_index`. """ _, indices = self.strobe return value.slice(indices[steady_idx:]) def steady_total_energy_change( self, steady_idx: int, data: Optional[HIData] = None, **kwargs ): """ The steady energy change computed from ``data`` or online data. The ``kwargs`` are being passed on to the analysis methods. """ energies = self.get_steady_values( self.total_energy_from_power(data, **kwargs), steady_idx, data, **kwargs ) Δ_energies = energies.slice(slice(1, None)) - energies.slice(slice(0, -1)) return Δ_energies.mean def steady_bath_energy_change( self, bath: int, steady_idx: int, data: Optional[HIData] = None, **kwargs ): """ The steady energy change computed from ``data`` or online data. The ``kwargs`` are being passed on to the analysis methods. """ energies = self.get_steady_values( self.bath_energy(data, **kwargs).for_bath(bath), steady_idx, data, **kwargs ) Δ_energies = energies.slice(slice(1, None)) - energies.slice(slice(0, -1)) return Δ_energies.mean def power(self, steady_idx: int, *args, **kwargs): """ Calculate the mean steady state power. For the arguments see :any:`steady_energy_change`. """ _, indices = self.strobe return self.total_power().slice(slice(indices[steady_idx], None, 1)).mean def efficiency(self, steady_idx: int, data: Optional[HIData] = None, **kwargs): """ Calculate the steady state efficiency. For the arguments see :any:`steady_energy_change`. """ Δ_bath = self.steady_bath_energy_change(1, steady_idx, data, **kwargs) return self.steady_total_energy_change(steady_idx, data, **kwargs) / Δ_bath.mean def normalize_hamiltonian(hamiltonian: np.ndarray) -> np.ndarray: eigvals = np.linalg.eigvals(hamiltonian) normalized = hamiltonian - eigvals.min() * np.eye( hamiltonian.shape[0], dtype=hamiltonian.dtype ) normalized /= (eigvals.max() - eigvals.min()).real return normalized def normalize_dynamic_hamiltonian( hamiltonian: DynamicMatrix, t: float = 0 ) -> np.ndarray: at_t = hamiltonian(t) eigvals = np.linalg.eigvals(at_t) normalized = hamiltonian - eigvals.min() * np.eye( hamiltonian.shape[0], dtype=at_t.dtype ) normalized = normalized * (1 / (eigvals.max() - eigvals.min()).real) return normalized def get_energy_gap(hamiltonian: np.ndarray) -> float: eigvals = np.linalg.eigvals(hamiltonian) return (eigvals.max() - eigvals.min()).real def number_magnitude(number: float) -> int: return int(math.log10(number))