ray/python/ray/tune
2020-09-16 18:55:11 -07:00
..
analysis [tune] added type hints (#10806) 2020-09-15 21:03:56 -07:00
automl [tune] Refactor search algorithms (#7037) 2020-04-27 08:51:13 -07:00
automlboard Replace all instances of ray.readthedocs.io with ray.io (#7994) 2020-04-13 16:17:05 -07:00
examples [docker] Detect CPUs in container correctly (#10507) 2020-09-13 23:40:48 -07:00
integration [tune] added type hints (#10806) 2020-09-15 21:03:56 -07:00
schedulers [tune] added type hints (#10806) 2020-09-15 21:03:56 -07:00
suggest [tune] added type hints (#10806) 2020-09-15 21:03:56 -07:00
tests [tune] check for running session (#10840) 2020-09-16 18:55:11 -07:00
track [tune] tune.track -> tune.report (#8388) 2020-05-16 12:55:08 -07:00
utils [tune] More robust resolution/detection of signature (#10365) 2020-09-08 11:38:16 -07:00
__init__.py [tune] check for running session (#10840) 2020-09-16 18:55:11 -07:00
BUILD [tune] add mode/metric parameters to tune.run (#10627) 2020-09-08 17:06:21 -07:00
checkpoint_manager.py [Tune] Pbt Function API (#9958) 2020-08-14 17:52:30 -07:00
cluster_info.py [tune] API revamp fix (#10518) 2020-09-05 15:34:53 -07:00
commands.py [tune] Tune experiment analysis improvements (#10645) 2020-09-08 21:00:52 -07:00
config_parser.py [tune] custom trial directory name (#10214) 2020-08-25 12:52:54 -07:00
durable_trainable.py [tune] Use public methods for trainable (#9184) 2020-07-01 11:00:00 -07:00
error.py Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
experiment.py [tune] Added timeout parameter to tune.run(), (#10642) 2020-09-08 15:38:28 -07:00
function_runner.py [tune] wrapper function to pass arbitrary objects through the object store to trainables (#10679) 2020-09-10 17:39:44 -07:00
logger.py [RLlib] Dreamer (#10172) 2020-08-26 13:24:05 +02:00
progress_reporter.py [tune] auto infer metrics (#10663) 2020-09-09 09:53:47 -07:00
ray_trial_executor.py [tune/rllib] revert removal of queue-trials (#10744) 2020-09-11 14:13:20 -07:00
README.rst Replace all instances of ray.readthedocs.io with ray.io (#7994) 2020-04-13 16:17:05 -07:00
registry.py [tune] wrapper function to pass arbitrary objects through the object store to trainables (#10679) 2020-09-10 17:39:44 -07:00
requirements-dev.txt [Hotfix] Pin opencv-python-headless==4.3.0.36 (#10049) 2020-08-11 15:58:18 -07:00
resources.py [tune] Update API Reference Page (#7671) 2020-03-22 16:42:20 -07:00
result.py [tune] auto infer metrics (#10663) 2020-09-09 09:53:47 -07:00
sample.py [tune] Add algorithms for search space conversion (#10621) 2020-09-07 13:44:16 -07:00
scripts.py Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
session.py [tune] check for running session (#10840) 2020-09-16 18:55:11 -07:00
sklearn.py [tune] Docs for tune-sklearn (#9129) 2020-07-06 15:35:10 -07:00
stopper.py [tune] Added timeout parameter to tune.run(), (#10642) 2020-09-08 15:38:28 -07:00
sync_client.py Remove future imports (#6724) 2020-01-09 00:15:48 -08:00
syncer.py [tune] API revamp fix (#10518) 2020-09-05 15:34:53 -07:00
trainable.py [tune] Support true pooling and batched concurrency (#10352) 2020-09-01 10:33:49 -07:00
trial.py [tune] change trial dir default to include name (#10608) 2020-09-07 19:45:13 -07:00
trial_executor.py [tune/rllib] revert removal of queue-trials (#10744) 2020-09-11 14:13:20 -07:00
trial_runner.py [tune] API revamp fix (#10518) 2020-09-05 15:34:53 -07:00
tune.py [tune/rllib] revert removal of queue-trials (#10744) 2020-09-11 14:13:20 -07:00
TuneClient.ipynb [hotfix] fix backward compat with older yaml libraries 2019-07-06 20:41:28 -07:00
web_server.py [tune] Cancel Experiment via Client (#7719) 2020-03-24 20:30:12 -07:00

Tune: Scalable Hyperparameter Tuning
====================================

Tune is a scalable framework for hyperparameter search with a focus on deep learning and deep reinforcement learning.

User documentation can be `found here <http://docs.ray.io/en/latest/tune.html>`__.


Tutorial
--------

To get started with Tune, try going through `our tutorial of using Tune with Keras <https://github.com/ray-project/tutorial/blob/master/tune_exercises/exercise_1_basics.ipynb>`__.

(Experimental): You can try out `the above tutorial on a free hosted server via Binder <https://mybinder.org/v2/gh/ray-project/tutorial/master?filepath=tune_exercises%2Fexercise_1_basics.ipynb>`__.


Citing Tune
-----------

If Tune helps you in your academic research, you are encouraged to cite `our paper <https://arxiv.org/abs/1807.05118>`__. Here is an example bibtex:

.. code-block:: tex

    @article{liaw2018tune,
        title={Tune: A Research Platform for Distributed Model Selection and Training},
        author={Liaw, Richard and Liang, Eric and Nishihara, Robert and
                Moritz, Philipp and Gonzalez, Joseph E and Stoica, Ion},
        journal={arXiv preprint arXiv:1807.05118},
        year={2018}
    }