ray/rllib/utils/exploration/upper_confidence_bound.py

45 lines
1.4 KiB
Python

from typing import Union
from ray.rllib.utils.annotations import PublicAPI
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.utils.annotations import override
from ray.rllib.utils.exploration.exploration import Exploration
from ray.rllib.utils.framework import (
TensorType,
try_import_tf,
)
tf1, tf, tfv = try_import_tf()
@PublicAPI
class UpperConfidenceBound(Exploration):
@override(Exploration)
def get_exploration_action(
self,
action_distribution: ActionDistribution,
timestep: Union[int, TensorType],
explore: bool = True,
):
if self.framework == "torch":
return self._get_torch_exploration_action(action_distribution, explore)
elif self.framework == "tf2":
return self._get_tf_exploration_action(action_distribution, explore)
else:
raise NotImplementedError
def _get_torch_exploration_action(self, action_dist, explore):
if explore:
return action_dist.inputs.argmax(dim=-1), None
else:
scores = self.model.value_function()
return scores.argmax(dim=-1), None
def _get_tf_exploration_action(self, action_dist, explore):
action = tf.argmax(
tf.cond(
explore, lambda: action_dist.inputs, lambda: self.model.value_function()
),
axis=-1,
)
return action, None