ray/rllib/utils/replay_buffers/replay_buffer.py

374 lines
13 KiB
Python

import logging
import platform
from typing import Any, Dict, List, Optional, Callable, Union
import numpy as np
import random
from enum import Enum
# Import ray before psutil will make sure we use psutil's bundled version
import ray # noqa F401
import psutil # noqa E402
from ray.util.debug import log_once
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.deprecation import Deprecated
from ray.rllib.utils.metrics.window_stat import WindowStat
from ray.rllib.utils.typing import SampleBatchType, T
from ray.util.annotations import DeveloperAPI
from ray.util.iter import ParallelIteratorWorker
# Constant that represents all policies in lockstep replay mode.
_ALL_POLICIES = "__all__"
logger = logging.getLogger(__name__)
@DeveloperAPI
class StorageUnit(Enum):
TIMESTEPS = "timesteps"
SEQUENCES = "sequences"
EPISODES = "episodes"
FRAGMENTS = "fragments"
@DeveloperAPI
def warn_replay_capacity(*, item: SampleBatchType, num_items: int) -> None:
"""Warn if the configured replay buffer capacity is too large."""
if log_once("replay_capacity"):
item_size = item.size_bytes()
psutil_mem = psutil.virtual_memory()
total_gb = psutil_mem.total / 1e9
mem_size = num_items * item_size / 1e9
msg = (
"Estimated max memory usage for replay buffer is {} GB "
"({} batches of size {}, {} bytes each), "
"available system memory is {} GB".format(
mem_size, num_items, item.count, item_size, total_gb
)
)
if mem_size > total_gb:
raise ValueError(msg)
elif mem_size > 0.2 * total_gb:
logger.warning(msg)
else:
logger.info(msg)
@DeveloperAPI
class ReplayBuffer(ParallelIteratorWorker):
def __init__(
self,
capacity: int = 10000,
storage_unit: Union[str, StorageUnit] = "timesteps",
**kwargs,
):
"""Initializes a (FIFO) ReplayBuffer instance.
Args:
capacity: Max number of timesteps to store in this FIFO
buffer. After reaching this number, older samples will be
dropped to make space for new ones.
storage_unit: Either 'timesteps', `sequences` or
`episodes`. Specifies how experiences are stored.
**kwargs: Forward compatibility kwargs.
"""
if storage_unit in ["timesteps", StorageUnit.TIMESTEPS]:
self._storage_unit = StorageUnit.TIMESTEPS
elif storage_unit in ["sequences", StorageUnit.SEQUENCES]:
self._storage_unit = StorageUnit.SEQUENCES
elif storage_unit in ["episodes", StorageUnit.EPISODES]:
self._storage_unit = StorageUnit.EPISODES
elif storage_unit in ["fragments", StorageUnit.FRAGMENTS]:
self._storage_unit = StorageUnit.FRAGMENTS
else:
raise ValueError(
"storage_unit must be either 'timesteps', `sequences` or `episodes` "
"or `fragments`, but is {}".format(storage_unit)
)
# The actual storage (list of SampleBatches or MultiAgentBatches).
self._storage = []
# Caps the number of timesteps stored in this buffer
if capacity <= 0:
raise ValueError(
"Capacity of replay buffer has to be greater than zero "
"but was set to {}.".format(capacity)
)
self.capacity = capacity
# The next index to override in the buffer.
self._next_idx = 0
# len(self._hit_count) must always be less than len(capacity)
self._hit_count = np.zeros(self.capacity)
# Whether we have already hit our capacity (and have therefore
# started to evict older samples).
self._eviction_started = False
# Number of (single) timesteps that have been added to the buffer
# over its lifetime. Note that each added item (batch) may contain
# more than one timestep.
self._num_timesteps_added = 0
self._num_timesteps_added_wrap = 0
# Number of (single) timesteps that have been sampled from the buffer
# over its lifetime.
self._num_timesteps_sampled = 0
self._evicted_hit_stats = WindowStat("evicted_hit", 1000)
self._est_size_bytes = 0
self.batch_size = None
def __len__(self) -> int:
"""Returns the number of items currently stored in this buffer."""
return len(self._storage)
@DeveloperAPI
def add(self, batch: SampleBatchType, **kwargs) -> None:
"""Adds a batch of experiences to this buffer.
Also splits experiences into chunks of timesteps, sequences
or episodes, depending on self._storage_unit. Calls
self._add_single_batch.
Args:
batch: Batch to add to this buffer's storage.
**kwargs: Forward compatibility kwargs.
"""
if not batch.count > 0:
return
warn_replay_capacity(item=batch, num_items=self.capacity / batch.count)
if self._storage_unit == StorageUnit.TIMESTEPS:
self._add_single_batch(batch, **kwargs)
elif self._storage_unit == StorageUnit.SEQUENCES:
timestep_count = 0
for seq_len in batch.get(SampleBatch.SEQ_LENS):
start_seq = timestep_count
end_seq = timestep_count + seq_len
self._add_single_batch(batch[start_seq:end_seq], **kwargs)
timestep_count = end_seq
elif self._storage_unit == StorageUnit.EPISODES:
for eps in batch.split_by_episode():
if (
eps.get(SampleBatch.T)[0] == 0
and eps.get(SampleBatch.DONES)[-1] == True # noqa E712
):
# Only add full episodes to the buffer
self._add_single_batch(eps, **kwargs)
else:
if log_once("only_full_episodes"):
logger.info(
"This buffer uses episodes as a storage "
"unit and thus allows only full episodes "
"to be added to it. Some samples may be "
"dropped."
)
elif self._storage_unit == StorageUnit.FRAGMENTS:
self._add_single_batch(batch, **kwargs)
@DeveloperAPI
def _add_single_batch(self, item: SampleBatchType, **kwargs) -> None:
"""Add a SampleBatch of experiences to self._storage.
An item consists of either one or more timesteps, a sequence or an
episode. Differs from add() in that it does not consider the storage
unit or type of batch and simply stores it.
Args:
item: The batch to be added.
**kwargs: Forward compatibility kwargs.
"""
self._num_timesteps_added += item.count
self._num_timesteps_added_wrap += item.count
if self._next_idx >= len(self._storage):
self._storage.append(item)
self._est_size_bytes += item.size_bytes()
else:
item_to_be_removed = self._storage[self._next_idx]
self._est_size_bytes -= item_to_be_removed.size_bytes()
self._storage[self._next_idx] = item
self._est_size_bytes += item.size_bytes()
# Eviction of older samples has already started (buffer is "full").
if self._eviction_started:
self._evicted_hit_stats.push(self._hit_count[self._next_idx])
self._hit_count[self._next_idx] = 0
# Wrap around storage as a circular buffer once we hit capacity.
if self._num_timesteps_added_wrap >= self.capacity:
self._eviction_started = True
self._num_timesteps_added_wrap = 0
self._next_idx = 0
else:
self._next_idx += 1
@DeveloperAPI
def sample(self, num_items: int, **kwargs) -> Optional[SampleBatchType]:
"""Samples `num_items` items from this buffer.
Samples in the results may be repeated.
Examples for storage of SamplesBatches:
- If storage unit `timesteps` has been chosen and batches of
size 5 have been added, sample(5) will yield a concatenated batch of
15 timesteps.
- If storage unit 'sequences' has been chosen and sequences of
different lengths have been added, sample(5) will yield a concatenated
batch with a number of timesteps equal to the sum of timesteps in
the 5 sampled sequences.
- If storage unit 'episodes' has been chosen and episodes of
different lengths have been added, sample(5) will yield a concatenated
batch with a number of timesteps equal to the sum of timesteps in
the 5 sampled episodes.
Args:
num_items: Number of items to sample from this buffer.
**kwargs: Forward compatibility kwargs.
Returns:
Concatenated batch of items.
"""
idxes = [random.randint(0, len(self) - 1) for _ in range(num_items)]
sample = self._encode_sample(idxes)
self._num_timesteps_sampled += sample.count
return sample
@DeveloperAPI
def stats(self, debug: bool = False) -> dict:
"""Returns the stats of this buffer.
Args:
debug: If True, adds sample eviction statistics to the returned
stats dict.
Returns:
A dictionary of stats about this buffer.
"""
data = {
"added_count": self._num_timesteps_added,
"added_count_wrapped": self._num_timesteps_added_wrap,
"eviction_started": self._eviction_started,
"sampled_count": self._num_timesteps_sampled,
"est_size_bytes": self._est_size_bytes,
"num_entries": len(self._storage),
}
if debug:
data.update(self._evicted_hit_stats.stats())
return data
@DeveloperAPI
def get_state(self) -> Dict[str, Any]:
"""Returns all local state.
Returns:
The serializable local state.
"""
state = {"_storage": self._storage, "_next_idx": self._next_idx}
state.update(self.stats(debug=False))
return state
@DeveloperAPI
def set_state(self, state: Dict[str, Any]) -> None:
"""Restores all local state to the provided `state`.
Args:
state: The new state to set this buffer. Can be
obtained by calling `self.get_state()`.
"""
# The actual storage.
self._storage = state["_storage"]
self._next_idx = state["_next_idx"]
# Stats and counts.
self._num_timesteps_added = state["added_count"]
self._num_timesteps_added_wrap = state["added_count_wrapped"]
self._eviction_started = state["eviction_started"]
self._num_timesteps_sampled = state["sampled_count"]
self._est_size_bytes = state["est_size_bytes"]
@DeveloperAPI
def _encode_sample(self, idxes: List[int]) -> SampleBatchType:
"""Fetches concatenated samples at given indeces from the storage."""
samples = []
for i in idxes:
self._hit_count[i] += 1
samples.append(self._storage[i])
if samples:
# We assume all samples are of same type
sample_type = type(samples[0])
out = sample_type.concat_samples(samples)
else:
out = SampleBatch()
out.decompress_if_needed()
return out
@DeveloperAPI
def get_host(self) -> str:
"""Returns the computer's network name.
Returns:
The computer's networks name or an empty string, if the network
name could not be determined.
"""
return platform.node()
@DeveloperAPI
def apply(
self,
func: Callable[["ReplayBuffer", Optional[Any], Optional[Any]], T],
*_args,
**kwargs,
) -> T:
"""Calls the given function with this ReplayBuffer instance.
This is useful if we want to apply a function to a set of remote actors.
Args:
func: A callable that accepts the replay buffer itself, args and kwargs
*_arkgs: Any args to pass to func
**kwargs: Any kwargs to pass to func
Returns:
Return value of the induced function call
"""
return func(self, *_args, **kwargs)
@Deprecated(old="ReplayBuffer.add_batch()", new="ReplayBuffer.add()", error=False)
def add_batch(self, *args, **kwargs):
return self.add(*args, **kwargs)
@Deprecated(
old="ReplayBuffer.replay(num_items)",
new="ReplayBuffer.sample(num_items)",
error=False,
)
def replay(self, num_items):
return self.sample(num_items)
@Deprecated(
help="ReplayBuffers could be iterated over by default before. "
"Making a buffer an iterator will soon "
"be deprecated altogether. Consider switching to the training "
"iteration API to resolve this.",
error=False,
)
def make_iterator(self, num_items_to_replay: int):
"""Make this buffer a ParallelIteratorWorker to retain compatibility.
Execution plans have made heavy use of buffers as ParallelIteratorWorkers.
This method provides an easy way to support this for now.
"""
def gen_replay():
while True:
yield self.sample(num_items_to_replay)
ParallelIteratorWorker.__init__(self, gen_replay, False)