ray/rllib/agents/dqn/tests/test_dqn.py

262 lines
11 KiB
Python

import numpy as np
import unittest
import ray.rllib.agents.dqn as dqn
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check, framework_iterator
tf = try_import_tf()
class TestDQN(unittest.TestCase):
def test_dqn_compilation(self):
"""Test whether a DQNTrainer can be built with both frameworks."""
config = dqn.DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
num_iterations = 2
for _ in framework_iterator(config, frameworks=["tf", "eager"]):
# Rainbow.
rainbow_config = config.copy()
rainbow_config["num_atoms"] = 10
rainbow_config["noisy"] = True
rainbow_config["double_q"] = True
rainbow_config["dueling"] = True
rainbow_config["n_step"] = 5
trainer = dqn.DQNTrainer(config=rainbow_config, env="CartPole-v0")
for i in range(num_iterations):
results = trainer.train()
print(results)
# double-dueling DQN.
plain_config = config.copy()
trainer = dqn.DQNTrainer(config=plain_config, env="CartPole-v0")
for i in range(num_iterations):
results = trainer.train()
print(results)
def test_dqn_exploration_and_soft_q_config(self):
"""Tests, whether a DQN Agent outputs exploration/softmaxed actions."""
config = dqn.DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
obs = np.array(0)
# Test against all frameworks.
for _ in framework_iterator(config, ["tf", "eager"]):
# Default EpsilonGreedy setup.
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Setting explore=False should always return the same action.
a_ = trainer.compute_action(obs, explore=False)
for _ in range(50):
a = trainer.compute_action(obs, explore=False)
check(a, a_)
# explore=None (default: explore) should return different actions.
actions = []
for _ in range(50):
actions.append(trainer.compute_action(obs))
check(np.std(actions), 0.0, false=True)
# Low softmax temperature. Behaves like argmax
# (but no epsilon exploration).
config["exploration_config"] = {
"type": "SoftQ",
"temperature": 0.001
}
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Due to the low temp, always expect the same action.
a_ = trainer.compute_action(obs)
for _ in range(50):
a = trainer.compute_action(obs)
check(a, a_)
# Higher softmax temperature.
config["exploration_config"]["temperature"] = 1.0
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Even with the higher temperature, if we set explore=False, we
# should expect the same actions always.
a_ = trainer.compute_action(obs, explore=False)
for _ in range(50):
a = trainer.compute_action(obs, explore=False)
check(a, a_)
# Due to the higher temp, expect different actions avg'ing
# around 1.5.
actions = []
for _ in range(300):
actions.append(trainer.compute_action(obs))
check(np.std(actions), 0.0, false=True)
# With Random exploration.
config["exploration_config"] = {"type": "Random"}
config["explore"] = True
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
actions = []
for _ in range(300):
actions.append(trainer.compute_action(obs))
check(np.std(actions), 0.0, false=True)
def test_dqn_parameter_noise_exploration(self):
"""Tests, whether a DQN Agent works with ParameterNoise."""
obs = np.array(0)
core_config = dqn.DEFAULT_CONFIG.copy()
core_config["num_workers"] = 0 # Run locally.
core_config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
for fw in framework_iterator(core_config, ["tf", "eager"]):
config = core_config.copy()
# DQN with ParameterNoise exploration (config["explore"]=True).
# ----
config["exploration_config"] = {"type": "ParameterNoise"}
config["explore"] = True
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
policy = trainer.get_policy()
self.assertFalse(policy.exploration.weights_are_currently_noisy)
noise_before = self._get_current_noise(policy, fw)
check(noise_before, 0.0)
initial_weights = self._get_current_weight(policy, fw)
# Pseudo-start an episode and compare the weights before and after.
policy.exploration.on_episode_start(policy, tf_sess=policy._sess)
self.assertFalse(policy.exploration.weights_are_currently_noisy)
noise_after_ep_start = self._get_current_noise(policy, fw)
weights_after_ep_start = self._get_current_weight(policy, fw)
# Should be the same, as we don't do anything at the beginning of
# the episode, only one step later.
check(noise_after_ep_start, noise_before)
check(initial_weights, weights_after_ep_start)
# Setting explore=False should always return the same action.
a_ = trainer.compute_action(obs, explore=False)
self.assertFalse(policy.exploration.weights_are_currently_noisy)
noise = self._get_current_noise(policy, fw)
# We sampled the first noise (not zero anymore).
check(noise, 0.0, false=True)
# But still not applied b/c explore=False.
check(self._get_current_weight(policy, fw), initial_weights)
for _ in range(10):
a = trainer.compute_action(obs, explore=False)
check(a, a_)
# Noise never gets applied.
check(self._get_current_weight(policy, fw), initial_weights)
self.assertFalse(
policy.exploration.weights_are_currently_noisy)
# Explore=None (default: True) should return different actions.
# However, this is only due to the underlying epsilon-greedy
# exploration.
actions = []
current_weight = None
for _ in range(10):
actions.append(trainer.compute_action(obs))
self.assertTrue(policy.exploration.weights_are_currently_noisy)
# Now, noise actually got applied (explore=True).
current_weight = self._get_current_weight(policy, fw)
check(current_weight, initial_weights, false=True)
check(current_weight, initial_weights + noise)
check(np.std(actions), 0.0, false=True)
# Pseudo-end the episode and compare weights again.
# Make sure they are the original ones.
policy.exploration.on_episode_end(policy, tf_sess=policy._sess)
weights_after_ep_end = self._get_current_weight(policy, fw)
check(current_weight - noise, weights_after_ep_end, decimals=5)
# DQN with ParameterNoise exploration (config["explore"]=False).
# ----
config = core_config.copy()
config["exploration_config"] = {"type": "ParameterNoise"}
config["explore"] = False
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
policy = trainer.get_policy()
self.assertFalse(policy.exploration.weights_are_currently_noisy)
initial_weights = self._get_current_weight(policy, fw)
# Noise before anything (should be 0.0, no episode started yet).
noise = self._get_current_noise(policy, fw)
check(noise, 0.0)
# Pseudo-start an episode and compare the weights before and after
# (they should be the same).
policy.exploration.on_episode_start(policy, tf_sess=policy._sess)
self.assertFalse(policy.exploration.weights_are_currently_noisy)
# Should be the same, as we don't do anything at the beginning of
# the episode, only one step later.
noise = self._get_current_noise(policy, fw)
check(noise, 0.0)
noisy_weights = self._get_current_weight(policy, fw)
check(initial_weights, noisy_weights)
# Setting explore=False or None should always return the same
# action.
a_ = trainer.compute_action(obs, explore=False)
# Now we have re-sampled.
noise = self._get_current_noise(policy, fw)
check(noise, 0.0, false=True)
for _ in range(5):
a = trainer.compute_action(obs, explore=None)
check(a, a_)
a = trainer.compute_action(obs, explore=False)
check(a, a_)
# Pseudo-end the episode and compare weights again.
# Make sure they are the original ones (no noise permanently
# applied throughout the episode).
policy.exploration.on_episode_end(policy, tf_sess=policy._sess)
weights_after_episode_end = self._get_current_weight(policy, fw)
check(initial_weights, weights_after_episode_end)
# Noise should still be the same (re-sampling only happens at
# beginning of episode).
noise_after = self._get_current_noise(policy, fw)
check(noise, noise_after)
# Switch off EpsilonGreedy underlying exploration.
# ----
config = core_config.copy()
config["exploration_config"] = {
"type": "ParameterNoise",
"sub_exploration": {
"type": "EpsilonGreedy",
"action_space": trainer.get_policy().action_space,
"initial_epsilon": 0.0, # <- no randomness whatsoever
}
}
config["explore"] = True
trainer = dqn.DQNTrainer(config=config, env="FrozenLake-v0")
# Now, when we act - even with explore=True - we would expect
# the same action for the same input (parameter noise is
# deterministic).
policy = trainer.get_policy()
policy.exploration.on_episode_start(policy, tf_sess=policy._sess)
a_ = trainer.compute_action(obs)
for _ in range(10):
a = trainer.compute_action(obs, explore=True)
check(a, a_)
def _get_current_noise(self, policy, fw):
# If noise not even created yet, return 0.0.
if policy.exploration.noise is None:
return 0.0
noise = policy.exploration.noise[0][0][0]
if fw == "tf":
noise = policy.get_session().run(noise)
else:
noise = noise.numpy()
return noise
def _get_current_weight(self, policy, fw):
weights = policy.get_weights()
key = 0 if fw == "eager" else list(weights.keys())[0]
return weights[key][0][0]
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))