ray/rllib/offline/estimators/off_policy_estimator.py

188 lines
7 KiB
Python

from collections import namedtuple
import logging
from ray.rllib.policy.sample_batch import MultiAgentBatch, SampleBatch
from ray.rllib.policy import Policy
from ray.rllib.utils.annotations import DeveloperAPI
from ray.rllib.offline.io_context import IOContext
from ray.rllib.utils.annotations import Deprecated
from ray.rllib.utils.numpy import convert_to_numpy
from ray.rllib.utils.typing import TensorType, SampleBatchType
from typing import List
logger = logging.getLogger(__name__)
OffPolicyEstimate = DeveloperAPI(
namedtuple("OffPolicyEstimate", ["estimator_name", "metrics"])
)
@DeveloperAPI
class OffPolicyEstimator:
"""Interface for an off policy reward estimator."""
@DeveloperAPI
def __init__(self, name: str, policy: Policy, gamma: float):
"""Initializes an OffPolicyEstimator instance.
Args:
name: string to save OPE results under
policy: Policy to evaluate.
gamma: Discount factor of the environment.
"""
self.name = name
self.policy = policy
self.gamma = gamma
self.new_estimates = []
@DeveloperAPI
def estimate(self, batch: SampleBatchType) -> List[OffPolicyEstimate]:
"""Returns a list of off policy estimates for the given batch of episodes.
Args:
batch: The batch to calculate the off policy estimates (OPE) on.
Returns:
The off-policy estimates (OPE) calculated on the given batch.
"""
raise NotImplementedError
@DeveloperAPI
def train(self, batch: SampleBatchType) -> TensorType:
"""Trains an Off-Policy Estimator on a batch of experiences.
A model-based estimator should override this and train
a transition, value, or reward model.
Args:
batch: The batch to train the model on
Returns:
any optional training/loss metrics from the model
"""
pass
@DeveloperAPI
def action_log_likelihood(self, batch: SampleBatchType) -> TensorType:
"""Returns log likelihood for actions in given batch for policy.
Computes likelihoods by passing the observations through the current
policy's `compute_log_likelihoods()` method
Args:
batch: The SampleBatch or MultiAgentBatch to calculate action
log likelihoods from. This batch/batches must contain OBS
and ACTIONS keys.
Returns:
The probabilities of the actions in the batch, given the
observations and the policy.
"""
num_state_inputs = 0
for k in batch.keys():
if k.startswith("state_in_"):
num_state_inputs += 1
state_keys = ["state_in_{}".format(i) for i in range(num_state_inputs)]
log_likelihoods: TensorType = self.policy.compute_log_likelihoods(
actions=batch[SampleBatch.ACTIONS],
obs_batch=batch[SampleBatch.OBS],
state_batches=[batch[k] for k in state_keys],
prev_action_batch=batch.get(SampleBatch.PREV_ACTIONS),
prev_reward_batch=batch.get(SampleBatch.PREV_REWARDS),
actions_normalized=True,
)
log_likelihoods = convert_to_numpy(log_likelihoods)
return log_likelihoods
@DeveloperAPI
def check_can_estimate_for(self, batch: SampleBatchType) -> None:
"""Checks if we support off policy estimation (OPE) on given batch.
Args:
batch: The batch to check.
Raises:
ValueError: In case `action_prob` key is not in batch OR batch
is a MultiAgentBatch.
"""
if isinstance(batch, MultiAgentBatch):
raise ValueError(
"Off-Policy Estimation is not implemented for multi-agent batches. "
"You can set `off_policy_estimation_methods: {}` to resolve this."
)
if "action_prob" not in batch:
raise ValueError(
"Off-policy estimation is not possible unless the inputs "
"include action probabilities (i.e., the policy is stochastic "
"and emits the 'action_prob' key). For DQN this means using "
"`exploration_config: {type: 'SoftQ'}`. You can also set "
"`off_policy_estimation_methods: {}` to disable estimation."
)
@DeveloperAPI
def process(self, batch: SampleBatchType) -> None:
"""Computes off policy estimates (OPE) on batch and stores results.
Thus-far collected results can be retrieved then by calling
`self.get_metrics` (which flushes the internal results storage).
Args:
batch: The batch to process (call `self.estimate()` on) and
store results (OPEs) for.
"""
self.new_estimates.extend(self.estimate(batch))
@DeveloperAPI
def get_metrics(self, get_losses: bool = False) -> List[OffPolicyEstimate]:
"""Returns list of new episode metric estimates since the last call.
Args:
get_losses: If True, also return self.losses for the OPE estimator
Returns:
out: List of OffPolicyEstimate objects.
losses: List of training losses for the estimator.
"""
out = self.new_estimates
self.new_estimates = []
if hasattr(self, "losses"):
losses = self.losses
self.losses = []
if get_losses:
return out, losses
return out
# TODO (rohan): Remove deprecated methods; set to error=True because changing
# from one episode per SampleBatch to full SampleBatch is a breaking change anyway
@Deprecated(help="OffPolicyEstimator.__init__(policy, gamma, config)", error=False)
@classmethod
@DeveloperAPI
def create_from_io_context(cls, ioctx: IOContext) -> "OffPolicyEstimator":
"""Creates an off-policy estimator from an IOContext object.
Extracts Policy and gamma (discount factor) information from the
IOContext.
Args:
ioctx: The IOContext object to create the OffPolicyEstimator
from.
Returns:
The OffPolicyEstimator object created from the IOContext object.
"""
gamma = ioctx.worker.policy_config["gamma"]
# Grab a reference to the current model
keys = list(ioctx.worker.policy_map.keys())
if len(keys) > 1:
raise NotImplementedError(
"Off-policy estimation is not implemented for multi-agent. "
"You can set `input_evaluation: []` to resolve this."
)
policy = ioctx.worker.get_policy(keys[0])
config = ioctx.input_config.get("estimator_config", {})
return cls(policy, gamma, config)
@Deprecated(new="OffPolicyEstimator.create_from_io_context", error=True)
@DeveloperAPI
def create(self, *args, **kwargs):
return self.create_from_io_context(*args, **kwargs)
@Deprecated(new="OffPolicyEstimator.compute_log_likelihoods", error=False)
@DeveloperAPI
def action_prob(self, *args, **kwargs):
return self.compute_log_likelihoods(*args, **kwargs)