mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00
188 lines
7 KiB
Python
188 lines
7 KiB
Python
from collections import namedtuple
|
|
import logging
|
|
from ray.rllib.policy.sample_batch import MultiAgentBatch, SampleBatch
|
|
from ray.rllib.policy import Policy
|
|
from ray.rllib.utils.annotations import DeveloperAPI
|
|
from ray.rllib.offline.io_context import IOContext
|
|
from ray.rllib.utils.annotations import Deprecated
|
|
from ray.rllib.utils.numpy import convert_to_numpy
|
|
from ray.rllib.utils.typing import TensorType, SampleBatchType
|
|
from typing import List
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
OffPolicyEstimate = DeveloperAPI(
|
|
namedtuple("OffPolicyEstimate", ["estimator_name", "metrics"])
|
|
)
|
|
|
|
|
|
@DeveloperAPI
|
|
class OffPolicyEstimator:
|
|
"""Interface for an off policy reward estimator."""
|
|
|
|
@DeveloperAPI
|
|
def __init__(self, name: str, policy: Policy, gamma: float):
|
|
"""Initializes an OffPolicyEstimator instance.
|
|
|
|
Args:
|
|
name: string to save OPE results under
|
|
policy: Policy to evaluate.
|
|
gamma: Discount factor of the environment.
|
|
"""
|
|
self.name = name
|
|
self.policy = policy
|
|
self.gamma = gamma
|
|
self.new_estimates = []
|
|
|
|
@DeveloperAPI
|
|
def estimate(self, batch: SampleBatchType) -> List[OffPolicyEstimate]:
|
|
"""Returns a list of off policy estimates for the given batch of episodes.
|
|
|
|
Args:
|
|
batch: The batch to calculate the off policy estimates (OPE) on.
|
|
|
|
Returns:
|
|
The off-policy estimates (OPE) calculated on the given batch.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@DeveloperAPI
|
|
def train(self, batch: SampleBatchType) -> TensorType:
|
|
"""Trains an Off-Policy Estimator on a batch of experiences.
|
|
A model-based estimator should override this and train
|
|
a transition, value, or reward model.
|
|
|
|
Args:
|
|
batch: The batch to train the model on
|
|
|
|
Returns:
|
|
any optional training/loss metrics from the model
|
|
"""
|
|
pass
|
|
|
|
@DeveloperAPI
|
|
def action_log_likelihood(self, batch: SampleBatchType) -> TensorType:
|
|
"""Returns log likelihood for actions in given batch for policy.
|
|
|
|
Computes likelihoods by passing the observations through the current
|
|
policy's `compute_log_likelihoods()` method
|
|
|
|
Args:
|
|
batch: The SampleBatch or MultiAgentBatch to calculate action
|
|
log likelihoods from. This batch/batches must contain OBS
|
|
and ACTIONS keys.
|
|
|
|
Returns:
|
|
The probabilities of the actions in the batch, given the
|
|
observations and the policy.
|
|
"""
|
|
num_state_inputs = 0
|
|
for k in batch.keys():
|
|
if k.startswith("state_in_"):
|
|
num_state_inputs += 1
|
|
state_keys = ["state_in_{}".format(i) for i in range(num_state_inputs)]
|
|
log_likelihoods: TensorType = self.policy.compute_log_likelihoods(
|
|
actions=batch[SampleBatch.ACTIONS],
|
|
obs_batch=batch[SampleBatch.OBS],
|
|
state_batches=[batch[k] for k in state_keys],
|
|
prev_action_batch=batch.get(SampleBatch.PREV_ACTIONS),
|
|
prev_reward_batch=batch.get(SampleBatch.PREV_REWARDS),
|
|
actions_normalized=True,
|
|
)
|
|
log_likelihoods = convert_to_numpy(log_likelihoods)
|
|
return log_likelihoods
|
|
|
|
@DeveloperAPI
|
|
def check_can_estimate_for(self, batch: SampleBatchType) -> None:
|
|
"""Checks if we support off policy estimation (OPE) on given batch.
|
|
|
|
Args:
|
|
batch: The batch to check.
|
|
|
|
Raises:
|
|
ValueError: In case `action_prob` key is not in batch OR batch
|
|
is a MultiAgentBatch.
|
|
"""
|
|
|
|
if isinstance(batch, MultiAgentBatch):
|
|
raise ValueError(
|
|
"Off-Policy Estimation is not implemented for multi-agent batches. "
|
|
"You can set `off_policy_estimation_methods: {}` to resolve this."
|
|
)
|
|
|
|
if "action_prob" not in batch:
|
|
raise ValueError(
|
|
"Off-policy estimation is not possible unless the inputs "
|
|
"include action probabilities (i.e., the policy is stochastic "
|
|
"and emits the 'action_prob' key). For DQN this means using "
|
|
"`exploration_config: {type: 'SoftQ'}`. You can also set "
|
|
"`off_policy_estimation_methods: {}` to disable estimation."
|
|
)
|
|
|
|
@DeveloperAPI
|
|
def process(self, batch: SampleBatchType) -> None:
|
|
"""Computes off policy estimates (OPE) on batch and stores results.
|
|
Thus-far collected results can be retrieved then by calling
|
|
`self.get_metrics` (which flushes the internal results storage).
|
|
Args:
|
|
batch: The batch to process (call `self.estimate()` on) and
|
|
store results (OPEs) for.
|
|
"""
|
|
self.new_estimates.extend(self.estimate(batch))
|
|
|
|
@DeveloperAPI
|
|
def get_metrics(self, get_losses: bool = False) -> List[OffPolicyEstimate]:
|
|
"""Returns list of new episode metric estimates since the last call.
|
|
|
|
Args:
|
|
get_losses: If True, also return self.losses for the OPE estimator
|
|
Returns:
|
|
out: List of OffPolicyEstimate objects.
|
|
losses: List of training losses for the estimator.
|
|
"""
|
|
out = self.new_estimates
|
|
self.new_estimates = []
|
|
if hasattr(self, "losses"):
|
|
losses = self.losses
|
|
self.losses = []
|
|
if get_losses:
|
|
return out, losses
|
|
return out
|
|
|
|
# TODO (rohan): Remove deprecated methods; set to error=True because changing
|
|
# from one episode per SampleBatch to full SampleBatch is a breaking change anyway
|
|
|
|
@Deprecated(help="OffPolicyEstimator.__init__(policy, gamma, config)", error=False)
|
|
@classmethod
|
|
@DeveloperAPI
|
|
def create_from_io_context(cls, ioctx: IOContext) -> "OffPolicyEstimator":
|
|
"""Creates an off-policy estimator from an IOContext object.
|
|
Extracts Policy and gamma (discount factor) information from the
|
|
IOContext.
|
|
Args:
|
|
ioctx: The IOContext object to create the OffPolicyEstimator
|
|
from.
|
|
Returns:
|
|
The OffPolicyEstimator object created from the IOContext object.
|
|
"""
|
|
gamma = ioctx.worker.policy_config["gamma"]
|
|
# Grab a reference to the current model
|
|
keys = list(ioctx.worker.policy_map.keys())
|
|
if len(keys) > 1:
|
|
raise NotImplementedError(
|
|
"Off-policy estimation is not implemented for multi-agent. "
|
|
"You can set `input_evaluation: []` to resolve this."
|
|
)
|
|
policy = ioctx.worker.get_policy(keys[0])
|
|
config = ioctx.input_config.get("estimator_config", {})
|
|
return cls(policy, gamma, config)
|
|
|
|
@Deprecated(new="OffPolicyEstimator.create_from_io_context", error=True)
|
|
@DeveloperAPI
|
|
def create(self, *args, **kwargs):
|
|
return self.create_from_io_context(*args, **kwargs)
|
|
|
|
@Deprecated(new="OffPolicyEstimator.compute_log_likelihoods", error=False)
|
|
@DeveloperAPI
|
|
def action_prob(self, *args, **kwargs):
|
|
return self.compute_log_likelihoods(*args, **kwargs)
|