ray/release/rllib_tests/rllib_tests.yaml
gjoliver d8a61f801f
[RLlib] Create a set of performance benchmark tests to run nightly. (#19945)
* Create a core set of algorithms tests to run nightly.

* Run release tests under tf, tf2, and torch frameworks.

* Fix

* Add eager_tracing option for tf2 framework.

* make sure core tests can run in parallel.

* cql

* Report progress while running nightly/weekly tests.

* Innclude SAC in nightly lineup.

* Revert changes to learning_tests

* rebrand to performance test.

* update build_pipeline.py with new performance_tests name.

* Record stats.

* bug fix, need to populate experiments dict.

* Alphabetize yaml files.

* Allow specifying frameworks. And do not run tf2 by default.

* remove some debugging code.

* fix

* Undo testing changes.

* Do not run CQL regression for now.

* LINT.

Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-11-08 18:15:13 +01:00

95 lines
2.4 KiB
YAML

# Heavy learning tests (Atari and HalfCheetah) for major algos.
- name: learning_tests
cluster:
app_config: app_config.yaml
compute_template: 8gpus_64cpus.yaml
run:
timeout: 14400
script: python learning_tests/run.py
smoke_test:
run:
timeout: 1200
# 2-GPU learning tests (CartPole and RepeatAfterMeEnv) for major algos.
- name: multi_gpu_learning_tests
cluster:
app_config: app_config.yaml
compute_template: 8gpus_96cpus.yaml
run:
timeout: 7200
script: python multi_gpu_learning_tests/run.py
# 2-GPU learning tests (StatelessCartPole) + use_lstm=True for major algos
# (that support RNN models).
- name: multi_gpu_with_lstm_learning_tests
cluster:
app_config: app_config.yaml
compute_template: 8gpus_96cpus.yaml
run:
timeout: 7200
script: python multi_gpu_with_lstm_learning_tests/run.py
# 2-GPU learning tests (StatelessCartPole) + use_attention=True for major
# algos (that support RNN models).
- name: multi_gpu_with_attention_learning_tests
cluster:
app_config: app_config.yaml
compute_template: 8gpus_96cpus.yaml
run:
timeout: 7200
script: python multi_gpu_with_attention_learning_tests/run.py
# We'll have these as per-PR tests soon.
# - name: example_scripts_on_gpu_tests
# cluster:
# app_config: app_config.yaml
# compute_template: 1gpu_4cpus.yaml
# run:
# timeout: 7200
# script: bash unit_gpu_tests/run.sh
# IMPALA large machine stress tests (4x Atari).
- name: stress_tests
cluster:
app_config: app_config.yaml
compute_template: 4gpus_544_cpus.yaml
run:
timeout: 5400
prepare: python wait_cluster.py 6 600
script: python stress_tests/run_stress_tests.py
smoke_test:
run:
timeout: 2000
# Tests that exercise auto-scaling and Anyscale connect.
- name: connect_tests
cluster:
app_config: app_config.yaml
compute_template: auto_scale.yaml
run:
use_connect: True
timeout: 3000
script: python connect_tests/run_connect_tests.py
# Nightly performance regression for popular algorithms.
# These algorithms run nightly for pre-determined amount of time without
# passing criteria.
# Performance metrics, such as reward achieved and throughput, are then
# collected and tracked over time.
- name: performance_tests
cluster:
app_config: app_config.yaml
compute_template: 12gpus_192cpus.yaml
run:
timeout: 7200
script: python performance_tests/run.py