mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
37 lines
1.3 KiB
YAML
37 lines
1.3 KiB
YAML
interest-evolution-recsim-env-slateq:
|
|
env: ray.rllib.examples.env.recommender_system_envs_with_recsim.InterestEvolutionRecSimEnv
|
|
run: SlateQ
|
|
stop:
|
|
episode_reward_mean: 162.0
|
|
timesteps_total: 300000
|
|
config:
|
|
framework: tf2
|
|
|
|
# RLlib/RecSim wrapper specific settings:
|
|
env_config:
|
|
# Env class specified above takes one `config` arg in its c'tor:
|
|
config:
|
|
# Each step, sample `num_candidates` documents using the env-internal
|
|
# document sampler model (a logic that creates n documents to select
|
|
# the slate from).
|
|
resample_documents: true
|
|
num_candidates: 50
|
|
# How many documents to recommend (out of `num_candidates`) each
|
|
# timestep?
|
|
slate_size: 2
|
|
# Should the action space be purely Discrete? Useful for algos that
|
|
# don't support MultiDiscrete (e.g. DQN or Bandits).
|
|
# SlateQ handles MultiDiscrete action spaces.
|
|
convert_to_discrete_action_space: false
|
|
seed: 0
|
|
|
|
exploration_config:
|
|
warmup_timesteps: 20000
|
|
epsilon_timesteps: 70000
|
|
|
|
replay_buffer_config:
|
|
capacity: 500000
|
|
|
|
lr: 0.00025
|
|
|
|
metrics_num_episodes_for_smoothing: 200
|