ray/rllib/models/torch/visionnet.py
Sven 60d4d5e1aa Remove future imports (#6724)
* Remove all __future__ imports from RLlib.

* Remove (object) again from tf_run_builder.py::TFRunBuilder.

* Fix 2xLINT warnings.

* Fix broken appo_policy import (must be appo_tf_policy)

* Remove future imports from all other ray files (not just RLlib).

* Remove future imports from all other ray files (not just RLlib).

* Remove future import blocks that contain `unicode_literals` as well.
Revert appo_tf_policy.py to appo_policy.py (belongs to another PR).

* Add two empty lines before Schedule class.

* Put back __future__ imports into determine_tests_to_run.py. Fails otherwise on a py2/print related error.
2020-01-09 00:15:48 -08:00

62 lines
2.3 KiB
Python

from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.models.torch.misc import normc_initializer, valid_padding, \
SlimConv2d, SlimFC
from ray.rllib.models.tf.visionnet_v1 import _get_filter_config
from ray.rllib.utils.annotations import override
from ray.rllib.utils import try_import_torch
_, nn = try_import_torch()
class VisionNetwork(TorchModelV2, nn.Module):
"""Generic vision network."""
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
model_config, name)
nn.Module.__init__(self)
filters = model_config.get("conv_filters")
if not filters:
filters = _get_filter_config(obs_space.shape)
layers = []
(w, h, in_channels) = obs_space.shape
in_size = [w, h]
for out_channels, kernel, stride in filters[:-1]:
padding, out_size = valid_padding(in_size, kernel,
[stride, stride])
layers.append(
SlimConv2d(in_channels, out_channels, kernel, stride, padding))
in_channels = out_channels
in_size = out_size
out_channels, kernel, stride = filters[-1]
layers.append(
SlimConv2d(in_channels, out_channels, kernel, stride, None))
self._convs = nn.Sequential(*layers)
self._logits = SlimFC(
out_channels, num_outputs, initializer=nn.init.xavier_uniform_)
self._value_branch = SlimFC(
out_channels, 1, initializer=normc_initializer())
self._cur_value = None
@override(TorchModelV2)
def forward(self, input_dict, state, seq_lens):
features = self._hidden_layers(input_dict["obs"].float())
logits = self._logits(features)
self._cur_value = self._value_branch(features).squeeze(1)
return logits, state
@override(TorchModelV2)
def value_function(self):
assert self._cur_value is not None, "must call forward() first"
return self._cur_value
def _hidden_layers(self, obs):
res = self._convs(obs.permute(0, 3, 1, 2)) # switch to channel-major
res = res.squeeze(3)
res = res.squeeze(2)
return res