mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
72 lines
2.1 KiB
Python
72 lines
2.1 KiB
Python
"""Example of running a custom hand-coded policy alongside trainable policies.
|
|
|
|
This example has two policies:
|
|
(1) a simple PG policy
|
|
(2) a hand-coded policy that acts at random in the env (doesn't learn)
|
|
|
|
In the console output, you can see the PG policy does much better than random:
|
|
Result for PG_multi_cartpole_0:
|
|
...
|
|
policy_reward_mean:
|
|
pg_policy: 185.23
|
|
random: 21.255
|
|
...
|
|
"""
|
|
|
|
import argparse
|
|
import gym
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.policy import Policy
|
|
from ray.rllib.tests.test_multi_agent_env import MultiCartpole
|
|
from ray.tune.registry import register_env
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--num-iters", type=int, default=20)
|
|
|
|
|
|
class RandomPolicy(Policy):
|
|
"""Hand-coded policy that returns random actions."""
|
|
|
|
def compute_actions(self,
|
|
obs_batch,
|
|
state_batches=None,
|
|
prev_action_batch=None,
|
|
prev_reward_batch=None,
|
|
info_batch=None,
|
|
episodes=None,
|
|
**kwargs):
|
|
"""Compute actions on a batch of observations."""
|
|
return [self.action_space.sample() for _ in obs_batch], [], {}
|
|
|
|
def learn_on_batch(self, samples):
|
|
"""No learning."""
|
|
return {}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
ray.init()
|
|
|
|
# Simple environment with 4 independent cartpole entities
|
|
register_env("multi_cartpole", lambda _: MultiCartpole(4))
|
|
single_env = gym.make("CartPole-v0")
|
|
obs_space = single_env.observation_space
|
|
act_space = single_env.action_space
|
|
|
|
tune.run(
|
|
"PG",
|
|
stop={"training_iteration": args.num_iters},
|
|
config={
|
|
"env": "multi_cartpole",
|
|
"multiagent": {
|
|
"policies": {
|
|
"pg_policy": (None, obs_space, act_space, {}),
|
|
"random": (RandomPolicy, obs_space, act_space, {}),
|
|
},
|
|
"policy_mapping_fn": (
|
|
lambda agent_id: ["pg_policy", "random"][agent_id % 2]),
|
|
},
|
|
},
|
|
)
|