ray/rllib/models/tests/test_preprocessors.py
Avnish Narayan 026bf01071
[RLlib] Upgrade gym version to 0.21 and deprecate pendulum-v0. (#19535)
* Fix QMix, SAC, and MADDPA too.

* Unpin gym and deprecate pendulum v0

Many tests in rllib depended on pendulum v0,
however in gym 0.21, pendulum v0 was deprecated
in favor of pendulum v1. This may change reward
thresholds, so will have to potentially rerun
all of the pendulum v1 benchmarks, or use another
environment in favor. The same applies to frozen
lake v0 and frozen lake v1

Lastly, all of the RLlib tests and have
been moved to python 3.7

* Add gym installation based on python version.

Pin python<= 3.6 to gym 0.19 due to install
issues with atari roms in gym 0.20

* Reformatting

* Fixing tests

* Move atari-py install conditional to req.txt

* migrate to new ale install method

* Fix QMix, SAC, and MADDPA too.

* Unpin gym and deprecate pendulum v0

Many tests in rllib depended on pendulum v0,
however in gym 0.21, pendulum v0 was deprecated
in favor of pendulum v1. This may change reward
thresholds, so will have to potentially rerun
all of the pendulum v1 benchmarks, or use another
environment in favor. The same applies to frozen
lake v0 and frozen lake v1

Lastly, all of the RLlib tests and have
been moved to python 3.7
* Add gym installation based on python version.

Pin python<= 3.6 to gym 0.19 due to install
issues with atari roms in gym 0.20

Move atari-py install conditional to req.txt

migrate to new ale install method

Make parametric_actions_cartpole return float32 actions/obs

Adding type conversions if obs/actions don't match space

Add utils to make elements match gym space dtypes

Co-authored-by: Jun Gong <jungong@anyscale.com>
Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-11-03 16:24:00 +01:00

134 lines
5 KiB
Python

import gym
from gym.spaces import Box, Dict, Discrete, MultiDiscrete, Tuple
import numpy as np
import unittest
import ray
import ray.rllib.agents.ppo as ppo
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.models.preprocessors import DictFlatteningPreprocessor, \
get_preprocessor, NoPreprocessor, TupleFlatteningPreprocessor, \
OneHotPreprocessor, AtariRamPreprocessor, GenericPixelPreprocessor
from ray.rllib.utils.test_utils import check, check_compute_single_action, \
check_train_results, framework_iterator
class TestPreprocessors(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_preprocessing_disabled(self):
config = ppo.DEFAULT_CONFIG.copy()
config["env"] = "ray.rllib.examples.env.random_env.RandomEnv"
config["env_config"] = {
"config": {
"observation_space": Dict({
"a": Discrete(5),
"b": Dict({
"ba": Discrete(4),
"bb": Box(-1.0, 1.0, (2, 3), dtype=np.float32)
}),
"c": Tuple((MultiDiscrete([2, 3]), Discrete(1))),
"d": Box(-1.0, 1.0, (1, ), dtype=np.int32),
}),
},
}
# Set this to True to enforce no preprocessors being used.
# Complex observations now arrive directly in the model as
# structures of batches, e.g. {"a": tensor, "b": [tensor, tensor]}
# for obs-space=Dict(a=..., b=Tuple(..., ...)).
config["_disable_preprocessor_api"] = True
num_iterations = 1
# Only supported for tf so far.
for _ in framework_iterator(config):
trainer = ppo.PPOTrainer(config=config)
for i in range(num_iterations):
results = trainer.train()
check_train_results(results)
print(results)
check_compute_single_action(trainer)
trainer.stop()
def test_gym_preprocessors(self):
p1 = ModelCatalog.get_preprocessor(gym.make("CartPole-v0"))
self.assertEqual(type(p1), NoPreprocessor)
p2 = ModelCatalog.get_preprocessor(gym.make("FrozenLake-v1"))
self.assertEqual(type(p2), OneHotPreprocessor)
p3 = ModelCatalog.get_preprocessor(gym.make("MsPacman-ram-v0"))
self.assertEqual(type(p3), AtariRamPreprocessor)
p4 = ModelCatalog.get_preprocessor(gym.make("MsPacmanNoFrameskip-v4"))
self.assertEqual(type(p4), GenericPixelPreprocessor)
def test_tuple_preprocessor(self):
class TupleEnv:
def __init__(self):
self.observation_space = Tuple(
[Discrete(5),
Box(0, 5, shape=(3, ), dtype=np.float32)])
pp = ModelCatalog.get_preprocessor(TupleEnv())
self.assertTrue(isinstance(pp, TupleFlatteningPreprocessor))
self.assertEqual(pp.shape, (8, ))
self.assertEqual(
list(pp.transform((0, np.array([1, 2, 3], np.float32)))),
[float(x) for x in [1, 0, 0, 0, 0, 1, 2, 3]])
def test_dict_flattening_preprocessor(self):
space = Dict({
"a": Discrete(2),
"b": Tuple([Discrete(3), Box(-1.0, 1.0, (4, ))]),
})
pp = get_preprocessor(space)(space)
self.assertTrue(isinstance(pp, DictFlatteningPreprocessor))
self.assertEqual(pp.shape, (9, ))
check(
pp.transform({
"a": 1,
"b": (1, np.array([0.0, -0.5, 0.1, 0.6], np.float32))
}), [0.0, 1.0, 0.0, 1.0, 0.0, 0.0, -0.5, 0.1, 0.6])
def test_one_hot_preprocessor(self):
space = Discrete(5)
pp = get_preprocessor(space)(space)
self.assertTrue(isinstance(pp, OneHotPreprocessor))
self.assertTrue(pp.shape == (5, ))
check(pp.transform(3), [0.0, 0.0, 0.0, 1.0, 0.0])
check(pp.transform(0), [1.0, 0.0, 0.0, 0.0, 0.0])
space = MultiDiscrete([2, 3, 4])
pp = get_preprocessor(space)(space)
self.assertTrue(isinstance(pp, OneHotPreprocessor))
self.assertTrue(pp.shape == (9, ))
check(
pp.transform(np.array([1, 2, 0])),
[0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0])
check(
pp.transform(np.array([0, 1, 3])),
[1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0])
def test_nested_multidiscrete_one_hot_preprocessor(self):
space = Tuple((MultiDiscrete([2, 3, 4]), ))
pp = get_preprocessor(space)(space)
self.assertTrue(pp.shape == (9, ))
check(
pp.transform((np.array([1, 2, 0]), )),
[0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0])
check(
pp.transform((np.array([0, 1, 3]), )),
[1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0])
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))