mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00

We had unreported merge conflicts with DDPPO. This PR closes and combines #24092, #24035, #24030 and #23096 Co-authored-by: sven1977 <svenmika1977@gmail.com>
79 lines
2.7 KiB
Python
79 lines
2.7 KiB
Python
import unittest
|
|
import pytest
|
|
|
|
import ray
|
|
import ray.rllib.agents.ppo as ppo
|
|
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
|
|
from ray.rllib.utils.metrics.learner_info import LEARNER_INFO, LEARNER_STATS_KEY
|
|
from ray.rllib.utils.test_utils import (
|
|
check,
|
|
check_compute_single_action,
|
|
check_train_results,
|
|
framework_iterator,
|
|
)
|
|
|
|
|
|
class TestDDPPO(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
ray.init()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
ray.shutdown()
|
|
|
|
def test_ddppo_compilation(self):
|
|
"""Test whether a DDPPOTrainer can be built with both frameworks."""
|
|
config = ppo.ddppo.DEFAULT_CONFIG.copy()
|
|
config["num_gpus_per_worker"] = 0
|
|
num_iterations = 2
|
|
|
|
for _ in framework_iterator(config, frameworks="torch"):
|
|
trainer = ppo.ddppo.DDPPOTrainer(config=config, env="CartPole-v0")
|
|
for i in range(num_iterations):
|
|
results = trainer.train()
|
|
check_train_results(results)
|
|
print(results)
|
|
# Make sure, weights on all workers are the same.
|
|
weights = trainer.workers.foreach_worker(lambda w: w.get_weights())
|
|
for w in weights[1:]:
|
|
check(w, weights[1])
|
|
|
|
check_compute_single_action(trainer)
|
|
trainer.stop()
|
|
|
|
def test_ddppo_schedule(self):
|
|
"""Test whether lr_schedule will anneal lr to 0"""
|
|
config = ppo.ddppo.DEFAULT_CONFIG.copy()
|
|
config["num_gpus_per_worker"] = 0
|
|
config["lr_schedule"] = [[0, config["lr"]], [1000, 0.0]]
|
|
num_iterations = 10
|
|
|
|
for _ in framework_iterator(config, "torch"):
|
|
trainer = ppo.ddppo.DDPPOTrainer(config=config, env="CartPole-v0")
|
|
for _ in range(num_iterations):
|
|
result = trainer.train()
|
|
if result["info"][LEARNER_INFO]:
|
|
lr = result["info"][LEARNER_INFO][DEFAULT_POLICY_ID][
|
|
LEARNER_STATS_KEY
|
|
]["cur_lr"]
|
|
trainer.stop()
|
|
assert lr == 0.0, "lr should anneal to 0.0"
|
|
|
|
def test_validate_config(self):
|
|
"""Test if DDPPO will raise errors after invalid configs are passed."""
|
|
config = ppo.ddppo.DEFAULT_CONFIG.copy()
|
|
config["kl_coeff"] = 1.0
|
|
msg = "DDPPO doesn't support KL penalties like PPO-1"
|
|
with pytest.raises(ValueError, match=msg):
|
|
ppo.ddppo.DDPPOTrainer(config=config, env="CartPole-v0")
|
|
config["kl_coeff"] = 0.0
|
|
config["kl_target"] = 1.0
|
|
with pytest.raises(ValueError, match=msg):
|
|
ppo.ddppo.DDPPOTrainer(config=config, env="CartPole-v0")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
|
|
sys.exit(pytest.main(["-v", __file__]))
|